Current Path : /lib64/python2.7/ |
Current File : //lib64/python2.7/sre_compile.py |
# # Secret Labs' Regular Expression Engine # # convert template to internal format # # Copyright (c) 1997-2001 by Secret Labs AB. All rights reserved. # # See the sre.py file for information on usage and redistribution. # """Internal support module for sre""" import _sre, sys import sre_parse from sre_constants import * from _sre import MAXREPEAT assert _sre.MAGIC == MAGIC, "SRE module mismatch" if _sre.CODESIZE == 2: MAXCODE = 65535 else: MAXCODE = 0xFFFFFFFFL def _identityfunction(x): return x _LITERAL_CODES = set([LITERAL, NOT_LITERAL]) _REPEATING_CODES = set([REPEAT, MIN_REPEAT, MAX_REPEAT]) _SUCCESS_CODES = set([SUCCESS, FAILURE]) _ASSERT_CODES = set([ASSERT, ASSERT_NOT]) def _compile(code, pattern, flags): # internal: compile a (sub)pattern emit = code.append _len = len LITERAL_CODES = _LITERAL_CODES REPEATING_CODES = _REPEATING_CODES SUCCESS_CODES = _SUCCESS_CODES ASSERT_CODES = _ASSERT_CODES for op, av in pattern: if op in LITERAL_CODES: if flags & SRE_FLAG_IGNORECASE: emit(OPCODES[OP_IGNORE[op]]) emit(_sre.getlower(av, flags)) else: emit(OPCODES[op]) emit(av) elif op is IN: if flags & SRE_FLAG_IGNORECASE: emit(OPCODES[OP_IGNORE[op]]) def fixup(literal, flags=flags): return _sre.getlower(literal, flags) else: emit(OPCODES[op]) fixup = _identityfunction skip = _len(code); emit(0) _compile_charset(av, flags, code, fixup) code[skip] = _len(code) - skip elif op is ANY: if flags & SRE_FLAG_DOTALL: emit(OPCODES[ANY_ALL]) else: emit(OPCODES[ANY]) elif op in REPEATING_CODES: if flags & SRE_FLAG_TEMPLATE: raise error, "internal: unsupported template operator" emit(OPCODES[REPEAT]) skip = _len(code); emit(0) emit(av[0]) emit(av[1]) _compile(code, av[2], flags) emit(OPCODES[SUCCESS]) code[skip] = _len(code) - skip elif _simple(av) and op is not REPEAT: if op is MAX_REPEAT: emit(OPCODES[REPEAT_ONE]) else: emit(OPCODES[MIN_REPEAT_ONE]) skip = _len(code); emit(0) emit(av[0]) emit(av[1]) _compile(code, av[2], flags) emit(OPCODES[SUCCESS]) code[skip] = _len(code) - skip else: emit(OPCODES[REPEAT]) skip = _len(code); emit(0) emit(av[0]) emit(av[1]) _compile(code, av[2], flags) code[skip] = _len(code) - skip if op is MAX_REPEAT: emit(OPCODES[MAX_UNTIL]) else: emit(OPCODES[MIN_UNTIL]) elif op is SUBPATTERN: if av[0]: emit(OPCODES[MARK]) emit((av[0]-1)*2) # _compile_info(code, av[1], flags) _compile(code, av[1], flags) if av[0]: emit(OPCODES[MARK]) emit((av[0]-1)*2+1) elif op in SUCCESS_CODES: emit(OPCODES[op]) elif op in ASSERT_CODES: emit(OPCODES[op]) skip = _len(code); emit(0) if av[0] >= 0: emit(0) # look ahead else: lo, hi = av[1].getwidth() if lo != hi: raise error, "look-behind requires fixed-width pattern" emit(lo) # look behind _compile(code, av[1], flags) emit(OPCODES[SUCCESS]) code[skip] = _len(code) - skip elif op is CALL: emit(OPCODES[op]) skip = _len(code); emit(0) _compile(code, av, flags) emit(OPCODES[SUCCESS]) code[skip] = _len(code) - skip elif op is AT: emit(OPCODES[op]) if flags & SRE_FLAG_MULTILINE: av = AT_MULTILINE.get(av, av) if flags & SRE_FLAG_LOCALE: av = AT_LOCALE.get(av, av) elif flags & SRE_FLAG_UNICODE: av = AT_UNICODE.get(av, av) emit(ATCODES[av]) elif op is BRANCH: emit(OPCODES[op]) tail = [] tailappend = tail.append for av in av[1]: skip = _len(code); emit(0) # _compile_info(code, av, flags) _compile(code, av, flags) emit(OPCODES[JUMP]) tailappend(_len(code)); emit(0) code[skip] = _len(code) - skip emit(0) # end of branch for tail in tail: code[tail] = _len(code) - tail elif op is CATEGORY: emit(OPCODES[op]) if flags & SRE_FLAG_LOCALE: av = CH_LOCALE[av] elif flags & SRE_FLAG_UNICODE: av = CH_UNICODE[av] emit(CHCODES[av]) elif op is GROUPREF: if flags & SRE_FLAG_IGNORECASE: emit(OPCODES[OP_IGNORE[op]]) else: emit(OPCODES[op]) emit(av-1) elif op is GROUPREF_EXISTS: emit(OPCODES[op]) emit(av[0]-1) skipyes = _len(code); emit(0) _compile(code, av[1], flags) if av[2]: emit(OPCODES[JUMP]) skipno = _len(code); emit(0) code[skipyes] = _len(code) - skipyes + 1 _compile(code, av[2], flags) code[skipno] = _len(code) - skipno else: code[skipyes] = _len(code) - skipyes + 1 else: raise ValueError, ("unsupported operand type", op) def _compile_charset(charset, flags, code, fixup=None): # compile charset subprogram emit = code.append if fixup is None: fixup = _identityfunction for op, av in _optimize_charset(charset, fixup): emit(OPCODES[op]) if op is NEGATE: pass elif op is LITERAL: emit(fixup(av)) elif op is RANGE: emit(fixup(av[0])) emit(fixup(av[1])) elif op is CHARSET: code.extend(av) elif op is BIGCHARSET: code.extend(av) elif op is CATEGORY: if flags & SRE_FLAG_LOCALE: emit(CHCODES[CH_LOCALE[av]]) elif flags & SRE_FLAG_UNICODE: emit(CHCODES[CH_UNICODE[av]]) else: emit(CHCODES[av]) else: raise error, "internal: unsupported set operator" emit(OPCODES[FAILURE]) def _optimize_charset(charset, fixup): # internal: optimize character set out = [] outappend = out.append charmap = [0]*256 try: for op, av in charset: if op is NEGATE: outappend((op, av)) elif op is LITERAL: charmap[fixup(av)] = 1 elif op is RANGE: for i in range(fixup(av[0]), fixup(av[1])+1): charmap[i] = 1 elif op is CATEGORY: # XXX: could append to charmap tail return charset # cannot compress except IndexError: # character set contains unicode characters return _optimize_unicode(charset, fixup) # compress character map i = p = n = 0 runs = [] runsappend = runs.append for c in charmap: if c: if n == 0: p = i n = n + 1 elif n: runsappend((p, n)) n = 0 i = i + 1 if n: runsappend((p, n)) if len(runs) <= 2: # use literal/range for p, n in runs: if n == 1: outappend((LITERAL, p)) else: outappend((RANGE, (p, p+n-1))) if len(out) < len(charset): return out else: # use bitmap data = _mk_bitmap(charmap) outappend((CHARSET, data)) return out return charset def _mk_bitmap(bits): data = [] dataappend = data.append if _sre.CODESIZE == 2: start = (1, 0) else: start = (1L, 0L) m, v = start for c in bits: if c: v = v + m m = m + m if m > MAXCODE: dataappend(v) m, v = start return data # To represent a big charset, first a bitmap of all characters in the # set is constructed. Then, this bitmap is sliced into chunks of 256 # characters, duplicate chunks are eliminated, and each chunk is # given a number. In the compiled expression, the charset is # represented by a 16-bit word sequence, consisting of one word for # the number of different chunks, a sequence of 256 bytes (128 words) # of chunk numbers indexed by their original chunk position, and a # sequence of chunks (16 words each). # Compression is normally good: in a typical charset, large ranges of # Unicode will be either completely excluded (e.g. if only cyrillic # letters are to be matched), or completely included (e.g. if large # subranges of Kanji match). These ranges will be represented by # chunks of all one-bits or all zero-bits. # Matching can be also done efficiently: the more significant byte of # the Unicode character is an index into the chunk number, and the # less significant byte is a bit index in the chunk (just like the # CHARSET matching). # In UCS-4 mode, the BIGCHARSET opcode still supports only subsets # of the basic multilingual plane; an efficient representation # for all of UTF-16 has not yet been developed. This means, # in particular, that negated charsets cannot be represented as # bigcharsets. def _optimize_unicode(charset, fixup): try: import array except ImportError: return charset charmap = [0]*65536 negate = 0 try: for op, av in charset: if op is NEGATE: negate = 1 elif op is LITERAL: charmap[fixup(av)] = 1 elif op is RANGE: for i in xrange(fixup(av[0]), fixup(av[1])+1): charmap[i] = 1 elif op is CATEGORY: # XXX: could expand category return charset # cannot compress except IndexError: # non-BMP characters return charset if negate: if sys.maxunicode != 65535: # XXX: negation does not work with big charsets return charset for i in xrange(65536): charmap[i] = not charmap[i] comps = {} mapping = [0]*256 block = 0 data = [] for i in xrange(256): chunk = tuple(charmap[i*256:(i+1)*256]) new = comps.setdefault(chunk, block) mapping[i] = new if new == block: block = block + 1 data = data + _mk_bitmap(chunk) header = [block] if _sre.CODESIZE == 2: code = 'H' else: code = 'I' # Convert block indices to byte array of 256 bytes mapping = array.array('b', mapping).tostring() # Convert byte array to word array mapping = array.array(code, mapping) assert mapping.itemsize == _sre.CODESIZE header = header + mapping.tolist() data[0:0] = header return [(BIGCHARSET, data)] def _simple(av): # check if av is a "simple" operator lo, hi = av[2].getwidth() return lo == hi == 1 and av[2][0][0] != SUBPATTERN def _compile_info(code, pattern, flags): # internal: compile an info block. in the current version, # this contains min/max pattern width, and an optional literal # prefix or a character map lo, hi = pattern.getwidth() if lo == 0: return # not worth it # look for a literal prefix prefix = [] prefixappend = prefix.append prefix_skip = 0 charset = [] # not used charsetappend = charset.append if not (flags & SRE_FLAG_IGNORECASE): # look for literal prefix for op, av in pattern.data: if op is LITERAL: if len(prefix) == prefix_skip: prefix_skip = prefix_skip + 1 prefixappend(av) elif op is SUBPATTERN and len(av[1]) == 1: op, av = av[1][0] if op is LITERAL: prefixappend(av) else: break else: break # if no prefix, look for charset prefix if not prefix and pattern.data: op, av = pattern.data[0] if op is SUBPATTERN and av[1]: op, av = av[1][0] if op is LITERAL: charsetappend((op, av)) elif op is BRANCH: c = [] cappend = c.append for p in av[1]: if not p: break op, av = p[0] if op is LITERAL: cappend((op, av)) else: break else: charset = c elif op is BRANCH: c = [] cappend = c.append for p in av[1]: if not p: break op, av = p[0] if op is LITERAL: cappend((op, av)) else: break else: charset = c elif op is IN: charset = av ## if prefix: ## print "*** PREFIX", prefix, prefix_skip ## if charset: ## print "*** CHARSET", charset # add an info block emit = code.append emit(OPCODES[INFO]) skip = len(code); emit(0) # literal flag mask = 0 if prefix: mask = SRE_INFO_PREFIX if len(prefix) == prefix_skip == len(pattern.data): mask = mask + SRE_INFO_LITERAL elif charset: mask = mask + SRE_INFO_CHARSET emit(mask) # pattern length if lo < MAXCODE: emit(lo) else: emit(MAXCODE) prefix = prefix[:MAXCODE] if hi < MAXCODE: emit(hi) else: emit(0) # add literal prefix if prefix: emit(len(prefix)) # length emit(prefix_skip) # skip code.extend(prefix) # generate overlap table table = [-1] + ([0]*len(prefix)) for i in xrange(len(prefix)): table[i+1] = table[i]+1 while table[i+1] > 0 and prefix[i] != prefix[table[i+1]-1]: table[i+1] = table[table[i+1]-1]+1 code.extend(table[1:]) # don't store first entry elif charset: _compile_charset(charset, flags, code) code[skip] = len(code) - skip try: unicode except NameError: STRING_TYPES = (type(""),) else: STRING_TYPES = (type(""), type(unicode(""))) def isstring(obj): for tp in STRING_TYPES: if isinstance(obj, tp): return 1 return 0 def _code(p, flags): flags = p.pattern.flags | flags code = [] # compile info block _compile_info(code, p, flags) # compile the pattern _compile(code, p.data, flags) code.append(OPCODES[SUCCESS]) return code def compile(p, flags=0): # internal: convert pattern list to internal format if isstring(p): pattern = p p = sre_parse.parse(p, flags) else: pattern = None code = _code(p, flags) # print code # XXX: <fl> get rid of this limitation! if p.pattern.groups > 100: raise AssertionError( "sorry, but this version only supports 100 named groups" ) # map in either direction groupindex = p.pattern.groupdict indexgroup = [None] * p.pattern.groups for k, i in groupindex.items(): indexgroup[i] = k return _sre.compile( pattern, flags | p.pattern.flags, code, p.pattern.groups-1, groupindex, indexgroup )